1 |
francois |
283 |
//------------------------------------------------------------ |
2 |
|
|
//------------------------------------------------------------ |
3 |
|
|
// MAGiC |
4 |
|
|
// Jean Christophe Cuilli�re et Vincent FRANCOIS |
5 |
|
|
// D�partement de G�nie M�canique - UQTR |
6 |
|
|
//------------------------------------------------------------ |
7 |
|
|
// Le projet MAGIC est un projet de recherche du d�partement |
8 |
|
|
// de g�nie m�canique de l'Universit� du Qu�bec � |
9 |
|
|
// Trois Rivi�res |
10 |
|
|
// Les librairies ne peuvent �tre utilis�es sans l'accord |
11 |
|
|
// des auteurs (contact : francois@uqtr.ca) |
12 |
|
|
//------------------------------------------------------------ |
13 |
|
|
//------------------------------------------------------------ |
14 |
|
|
// |
15 |
|
|
// stbspline.cpp |
16 |
|
|
// |
17 |
|
|
//------------------------------------------------------------ |
18 |
|
|
//------------------------------------------------------------ |
19 |
|
|
// COPYRIGHT 2000 |
20 |
|
|
// Version du 02/03/2006 � 11H24 |
21 |
|
|
//------------------------------------------------------------ |
22 |
|
|
//------------------------------------------------------------ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h" |
26 |
|
|
|
27 |
|
|
#include "stbspline.h" |
28 |
|
|
#include <vector> |
29 |
|
|
#include "st_gestionnaire.h" |
30 |
|
|
#include "tpl_fonction.h" |
31 |
|
|
#include "constantegeo.h" |
32 |
|
|
|
33 |
|
|
#include <math.h> |
34 |
|
|
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
ST_B_SPLINE::ST_B_SPLINE(long LigneCourante,std::string idori,int bs_degre,std::vector<int> bs_indexptsctr,std::vector<int> bs_knots_multiplicities,std::vector<double> bs_knots):ST_COURBE(LigneCourante,idori),degre(bs_degre) |
38 |
|
|
{ |
39 |
|
|
int nb=bs_knots_multiplicities.size(); |
40 |
|
|
for (int i=0;i<nb;i++) |
41 |
|
|
{ |
42 |
|
|
for (int j=0;j<bs_knots_multiplicities[i];j++) |
43 |
|
|
knots.insert(knots.end(),bs_knots[i]); |
44 |
|
|
} |
45 |
|
|
nb_point=bs_indexptsctr.size(); |
46 |
|
|
for (int i=0;i<nb_point;i++) |
47 |
|
|
{ |
48 |
|
|
indexptsctr.insert(indexptsctr.end(),bs_indexptsctr[i]); |
49 |
|
|
poids.insert(poids.end(),1.); |
50 |
|
|
} |
51 |
|
|
|
52 |
|
|
} |
53 |
|
|
|
54 |
|
|
ST_B_SPLINE::ST_B_SPLINE(int bs_degre,std::vector<double> &vec_knots,std::vector<double> &vec_point,std::vector<double> &vec_poids):ST_COURBE(),degre(bs_degre) |
55 |
|
|
{ |
56 |
|
|
int nb=vec_knots.size(); |
57 |
|
|
for (int i=0;i<nb;i++) |
58 |
|
|
knots.insert(knots.end(),vec_knots[i]); |
59 |
|
|
nb_point=vec_point.size()/3; |
60 |
|
|
for (int i=0;i<nb_point;i++) |
61 |
|
|
{ |
62 |
|
|
ptsctr.insert(ptsctr.end(),vec_point[3*i]); |
63 |
|
|
ptsctr.insert(ptsctr.end(),vec_point[3*i+1]); |
64 |
|
|
ptsctr.insert(ptsctr.end(),vec_point[3*i+2]); |
65 |
|
|
poids.insert(poids.end(),vec_poids[i]); |
66 |
|
|
} |
67 |
|
|
double xyz1[3]; |
68 |
|
|
double xyz2[3]; |
69 |
|
|
xyz1[0]=vec_point[0]; |
70 |
|
|
xyz1[1]=vec_point[1]; |
71 |
|
|
xyz1[2]=vec_point[2]; |
72 |
|
|
xyz2[0]=vec_point[3*nb_point-3]; |
73 |
|
|
xyz2[1]=vec_point[3*nb_point-2]; |
74 |
|
|
xyz2[2]=vec_point[3*nb_point-1]; |
75 |
|
|
periodique=0; |
76 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6)) |
77 |
|
|
{ |
78 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6)) |
79 |
|
|
{ |
80 |
|
|
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6)) |
81 |
|
|
periodique=1; |
82 |
|
|
} |
83 |
|
|
} |
84 |
|
|
|
85 |
|
|
if (periodique==1) |
86 |
|
|
{ |
87 |
|
|
int i=knots.size(); |
88 |
|
|
periode=(knots[i-1]-knots[0]); |
89 |
|
|
} |
90 |
|
|
else periode=0; |
91 |
|
|
} |
92 |
|
|
|
93 |
|
|
ST_B_SPLINE::~ST_B_SPLINE() |
94 |
|
|
{ |
95 |
|
|
} |
96 |
|
|
|
97 |
|
|
int ST_B_SPLINE::get_intervalle(int nb_point, int degre, double t, std::vector<double> &knots) |
98 |
|
|
{ |
99 |
|
|
int inter; |
100 |
|
|
if (OPERATEUR::egal(t,knots[nb_point],1E-12)==1) inter=nb_point-1; |
101 |
|
|
else |
102 |
|
|
{ |
103 |
|
|
int low=degre; |
104 |
|
|
int high=nb_point+1; |
105 |
|
|
int mid=((low+high)/2); |
106 |
|
|
while ((t<knots[mid-1]) || (t>=knots[mid])) |
107 |
|
|
{ |
108 |
|
|
if (t<knots[mid-1]) high=mid; |
109 |
|
|
else low=mid; |
110 |
|
|
mid=(low+high)/2; |
111 |
|
|
} |
112 |
|
|
inter=mid-1; |
113 |
|
|
} |
114 |
|
|
return inter; |
115 |
|
|
} |
116 |
|
|
|
117 |
|
|
// Setup the binomial coefficients into th matrix Bin |
118 |
|
|
// Bin(i,j) = (i j) |
119 |
|
|
// The binomical coefficients are defined as follow |
120 |
|
|
// (n) n! |
121 |
|
|
// (k) = k!(n-k)! 0<=k<=n |
122 |
|
|
// and the following relationship applies |
123 |
|
|
// (n+1) (n) ( n ) |
124 |
|
|
// ( k ) = (k) + (k-1) |
125 |
|
|
/*! |
126 |
|
|
\brief Setup a matrix containing binomial coefficients |
127 |
|
|
|
128 |
|
|
Setup the binomial coefficients into th matrix Bin |
129 |
|
|
\htmlonly |
130 |
|
|
\[ Bin(i,j) = \left( \begin{array}{c}i \\ j\end{array} \right)\] |
131 |
|
|
The binomical coefficients are defined as follow |
132 |
|
|
\[ \left(\begin{array}{c} n \\ k \end{array} \right)= \frac{ n!}{k!(n-k)!} \mbox{for $0\leq k \leq n$} \] |
133 |
|
|
and the following relationship applies |
134 |
|
|
\[ \left(\begin{array}{c} n+1 \\ k \end{array} \right) = |
135 |
|
|
\left(\begin{array}{c} n \\ k \end{array} \right) + |
136 |
|
|
\left(\begin{array}{c} n \\ k-1 \end{array} \right) \] |
137 |
|
|
\endhtmlonly |
138 |
|
|
|
139 |
|
|
\param Bin the binomial matrix |
140 |
|
|
\author Philippe Lavoie |
141 |
|
|
\date 24 January, 1997 |
142 |
|
|
*/ |
143 |
|
|
void ST_B_SPLINE::binomialCoef(double * Bin, int d) { |
144 |
|
|
int n,k; |
145 |
|
|
// Setup the first line |
146 |
|
|
Bin[0] = 1.0 ; |
147 |
|
|
for (k=d-1;k>0;--k) |
148 |
|
|
Bin[k] = 0.0 ; |
149 |
|
|
// Setup the other lines |
150 |
|
|
for (n=0;n<d-1;n++) { |
151 |
|
|
Bin[(n+1)*d+0] = 1.0 ; |
152 |
|
|
for (k=1;k<d;k++) |
153 |
|
|
if (n+1<k) |
154 |
|
|
Bin[(n+1)*d+k] = 0.0 ; |
155 |
|
|
else |
156 |
|
|
Bin[(n+1)*d+k] = Bin[n*d+k] + Bin[n*d+k-1] ; |
157 |
|
|
} |
158 |
|
|
} |
159 |
|
|
|
160 |
|
|
void ST_B_SPLINE::get_valeur_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n) |
161 |
|
|
{ |
162 |
|
|
//inter=get_intervalle(nb_point,degre,t,knots); |
163 |
|
|
double saved; |
164 |
|
|
grand_n[0]=1.0; |
165 |
|
|
double gauche[16]; |
166 |
|
|
double droite[16]; |
167 |
|
|
for (int j=1;j<=degre;j++) |
168 |
|
|
{ |
169 |
|
|
gauche[j-1]= t-knots[inter-j+1]; |
170 |
|
|
droite[j-1]=knots[inter+j]-t; |
171 |
|
|
saved=0.0; |
172 |
|
|
for (int r=0;r<j;r++) |
173 |
|
|
{ |
174 |
|
|
double temp=grand_n[r]/(droite[r]+ gauche[j-r-1]); |
175 |
|
|
grand_n[r]=saved+droite[r]* temp; |
176 |
|
|
saved=gauche[j-r-1]*temp; |
177 |
|
|
} |
178 |
|
|
grand_n[j]=saved; |
179 |
|
|
} |
180 |
|
|
} |
181 |
|
|
|
182 |
|
|
|
183 |
|
|
void ST_B_SPLINE::evaluer(double t,double *Cw) |
184 |
|
|
{ |
185 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots); |
186 |
|
|
double grand_n[256]; |
187 |
|
|
get_valeur_fonction(inter,t,degre,knots,grand_n); |
188 |
|
|
|
189 |
|
|
// somme ( Ni,p(t) * Wi * Pi ) / somme ( Ni,p(t) * Wi ) |
190 |
|
|
|
191 |
|
|
double R[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
192 |
|
|
double Sum_Ni_wi = 0; |
193 |
|
|
|
194 |
|
|
for (int j=0; j<=degre; j++) |
195 |
|
|
{ |
196 |
|
|
Sum_Ni_wi += grand_n[j] * poids[inter-degre+j]; |
197 |
|
|
} |
198 |
|
|
|
199 |
|
|
for (int j=0; j<=degre; j++) |
200 |
|
|
{ |
201 |
|
|
R[j] = grand_n[j] * poids[inter-degre+j] / Sum_Ni_wi; |
202 |
|
|
} |
203 |
|
|
|
204 |
|
|
for (int i=0; i<3; i++) |
205 |
|
|
{ |
206 |
|
|
Cw[i] = 0; |
207 |
|
|
for (int j=0; j<=degre; j++) |
208 |
|
|
{ |
209 |
|
|
Cw[i] += R[j] * ptsctr[3*(inter-degre+j)+i]; |
210 |
|
|
} |
211 |
|
|
|
212 |
|
|
} |
213 |
|
|
|
214 |
|
|
} |
215 |
|
|
|
216 |
|
|
void ST_B_SPLINE::deriver_pts(int nb_point,int degre,std::vector<double> &knots,std::vector<double> &ptsctr_x,int d,int r1,int r2,double *PK_x) |
217 |
|
|
{ |
218 |
|
|
int r = r2-r1; |
219 |
|
|
#define PK_x(i,j) (*(PK_x+(i)*(degre+1)+j)) |
220 |
|
|
for (int i=0; i<=r; i++) |
221 |
|
|
{ |
222 |
|
|
PK_x(0,i)= ptsctr_x[r1+i]; |
223 |
|
|
} |
224 |
|
|
for (int k=1; k<=d; k++) |
225 |
|
|
{ |
226 |
|
|
int tmp = degre-k+1; |
227 |
|
|
for (int i=0; i<=r-k; i++) |
228 |
|
|
{ |
229 |
|
|
PK_x(k,i)= tmp*(PK_x(k-1,i+1)-PK_x(k-1,i))/(knots[r1+i+degre+1]-knots[r1+i+k]); |
230 |
|
|
} |
231 |
|
|
} |
232 |
|
|
#undef PK_x // enlever (i,j) |
233 |
|
|
} |
234 |
|
|
|
235 |
|
|
void ST_B_SPLINE::get_tout_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n) |
236 |
|
|
{ |
237 |
|
|
//inter=get_intervalle(nb_point,degre,t,knots); |
238 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j)) |
239 |
|
|
double saved; |
240 |
|
|
grand_n(0,0)=1.0; |
241 |
|
|
double gauche[16]; |
242 |
|
|
double droite[16]; |
243 |
|
|
for (int j=1;j<=degre;j++) |
244 |
|
|
{ |
245 |
|
|
gauche[j-1]= t-knots[inter-j+1]; |
246 |
|
|
droite[j-1]=knots[inter+j]-t; |
247 |
|
|
saved=0.0; |
248 |
|
|
for (int r=0;r<j;r++) |
249 |
|
|
{ |
250 |
|
|
grand_n(j,r)=(droite[r]+ gauche[j-r-1]); |
251 |
|
|
double temp = grand_n(r,j-1)/grand_n(j,r); |
252 |
|
|
|
253 |
|
|
grand_n(r,j)= saved+droite[r]*temp; |
254 |
|
|
saved=gauche[j-r-1]*temp; |
255 |
|
|
} |
256 |
|
|
grand_n(j,j)=saved; |
257 |
|
|
} |
258 |
|
|
#undef grand_n // enlever (i,j) |
259 |
|
|
} |
260 |
|
|
|
261 |
|
|
void ST_B_SPLINE::deriver_bs_kieme(int nb_point,int degre,std::vector<double> &knots,std::vector<double> &ptsctr_x,double t,int d,double *CK) |
262 |
|
|
{ |
263 |
|
|
int du = std::min(d,degre); |
264 |
|
|
for (int k=degre+1;k<=d;k++) |
265 |
|
|
{ |
266 |
|
|
CK[k]=0.0; |
267 |
|
|
} |
268 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots); |
269 |
|
|
double grand_n[256]; |
270 |
|
|
get_tout_fonction(inter,t,degre,knots,grand_n); |
271 |
|
|
|
272 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j)) |
273 |
|
|
double PK[256]; |
274 |
|
|
deriver_pts(nb_point,degre,knots,ptsctr_x,du,inter-degre,inter,PK); |
275 |
|
|
#define PK(i,j) (*(PK+(i)*(degre+1)+j)) |
276 |
|
|
for (int k=0; k<=du;k++) |
277 |
|
|
{ |
278 |
|
|
CK[k] = 0.0; |
279 |
|
|
for (int j=0; j<=degre-k;j++) |
280 |
|
|
{ |
281 |
|
|
CK[k] = CK[k]+ grand_n(j,degre-k)*PK(k,j); //PK(k,j) PK[k*degre+j] |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
#undef PK // enlever (i,j) |
285 |
|
|
#undef grand_n // enlever (i,j) |
286 |
|
|
} |
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
|
|
void ST_B_SPLINE::deriver_kieme(double t,int d,double *CK_x,double *CK_y,double *CK_z) |
291 |
|
|
{ |
292 |
|
|
double Aders_x[16]; |
293 |
|
|
double Aders_y[16]; |
294 |
|
|
double Aders_z[16]; |
295 |
|
|
std::vector<double> ptsctr_wx; |
296 |
|
|
std::vector<double> ptsctr_wy; |
297 |
|
|
std::vector<double> ptsctr_wz; |
298 |
|
|
double xyz[3]; |
299 |
|
|
for (int i=0;i<nb_point;i++) |
300 |
|
|
{ |
301 |
|
|
xyz[0]=ptsctr[3*i]; |
302 |
|
|
xyz[1]=ptsctr[3*i+1]; |
303 |
|
|
xyz[2]=ptsctr[3*i+2]; |
304 |
|
|
ptsctr_wx.insert(ptsctr_wx.end(),poids[i]*xyz[0]); |
305 |
|
|
ptsctr_wy.insert(ptsctr_wy.end(),poids[i]*xyz[1]); |
306 |
|
|
ptsctr_wz.insert(ptsctr_wz.end(),poids[i]*xyz[2]); |
307 |
|
|
} |
308 |
|
|
deriver_bs_kieme(nb_point,degre,knots,ptsctr_wx,t,d,Aders_x); |
309 |
|
|
deriver_bs_kieme(nb_point,degre,knots,ptsctr_wy,t,d,Aders_y); |
310 |
|
|
deriver_bs_kieme(nb_point,degre,knots,ptsctr_wz,t,d,Aders_z); |
311 |
|
|
double Wders[16]; |
312 |
|
|
deriver_bs_kieme(nb_point,degre,knots,poids,t,d,Wders); |
313 |
|
|
double Bin[256]; |
314 |
|
|
binomialCoef(Bin, d); |
315 |
|
|
#define Bin(i,j) (*(Bin+(i)*(3)+j)) |
316 |
|
|
for (int k=0;k<=d;k++) |
317 |
|
|
{ |
318 |
|
|
double v_x = Aders_x[k]; |
319 |
|
|
double v_y = Aders_y[k]; |
320 |
|
|
double v_z = Aders_z[k]; |
321 |
|
|
for (int i=1;i<=k;i++) |
322 |
|
|
{ |
323 |
|
|
v_x = v_x - Bin(k-1,i-1)*Wders[i]*CK_x[k-i]; |
324 |
|
|
v_y = v_y - Bin(k-1,i-1)*Wders[i]*CK_y[k-i]; |
325 |
|
|
v_z = v_z - Bin(k-1,i-1)*Wders[i]*CK_z[k-i]; |
326 |
|
|
} |
327 |
|
|
CK_x[k] = v_x/Wders[0]; |
328 |
|
|
CK_y[k] = v_y/Wders[0]; |
329 |
|
|
CK_z[k] = v_z/Wders[0]; |
330 |
|
|
} |
331 |
|
|
#undef Bin // enlever (i,j) |
332 |
|
|
} |
333 |
|
|
|
334 |
|
|
void ST_B_SPLINE::deriver(double t,double *dxyz) |
335 |
|
|
{ |
336 |
|
|
double CK_x[2]; |
337 |
|
|
double CK_y[2]; |
338 |
|
|
double CK_z[2]; |
339 |
|
|
deriver_kieme(t,1,CK_x,CK_y,CK_z); |
340 |
|
|
dxyz[0]=CK_x[1]; |
341 |
|
|
dxyz[1]=CK_y[1]; |
342 |
|
|
dxyz[2]=CK_z[1]; |
343 |
|
|
} |
344 |
|
|
|
345 |
|
|
void ST_B_SPLINE::deriver_seconde(double t,double *ddxyz,double* dxyz ,double* xyz ) |
346 |
|
|
{ |
347 |
|
|
double CK_x[3]; |
348 |
|
|
double CK_y[3]; |
349 |
|
|
double CK_z[3]; |
350 |
|
|
deriver_kieme(t,2,CK_x,CK_y,CK_z); |
351 |
|
|
ddxyz[0]=CK_x[2]; |
352 |
|
|
ddxyz[1]=CK_y[2]; |
353 |
|
|
ddxyz[2]=CK_z[2]; |
354 |
|
|
if (dxyz!=NULL) |
355 |
|
|
{ |
356 |
|
|
dxyz[0]=CK_x[1]; |
357 |
|
|
dxyz[1]=CK_y[1]; |
358 |
|
|
dxyz[2]=CK_z[1]; |
359 |
|
|
} |
360 |
|
|
if (xyz!=NULL) |
361 |
|
|
{ |
362 |
|
|
xyz[0]=CK_x[0]; |
363 |
|
|
xyz[1]=CK_y[0]; |
364 |
|
|
xyz[2]=CK_z[0]; |
365 |
|
|
} |
366 |
|
|
} |
367 |
|
|
|
368 |
|
|
|
369 |
|
|
|
370 |
|
|
void ST_B_SPLINE::inverser(double& t,double *xyz,double precision) |
371 |
|
|
{ |
372 |
|
|
int code; |
373 |
|
|
int num_point=nb_point; |
374 |
|
|
do |
375 |
|
|
{ |
376 |
|
|
code=inverser2(t,xyz,num_point,precision); |
377 |
|
|
num_point=num_point*2; |
378 |
|
|
} |
379 |
|
|
while (code==0); |
380 |
|
|
} |
381 |
|
|
|
382 |
|
|
int ST_B_SPLINE::inverser2(double& t,double *xyz,int num_test,double precision) |
383 |
|
|
{ |
384 |
|
|
double xyz1[3]; |
385 |
|
|
double dxyz1[3]; |
386 |
|
|
double ddxyz1[3]; |
387 |
|
|
double ti; |
388 |
|
|
double eps; |
389 |
|
|
double tmin=get_tmin(); |
390 |
|
|
double tmax=get_tmax(); |
391 |
|
|
OT_VECTEUR_3D Pt(xyz[0],xyz[1],xyz[2]); |
392 |
|
|
double distance_ref=1e308; |
393 |
|
|
int ref; |
394 |
|
|
|
395 |
|
|
for (int i=0;i<num_test+1;i++) |
396 |
|
|
{ |
397 |
|
|
double t=tmin+i*1./num_test*(tmax-tmin); |
398 |
|
|
evaluer(t,xyz1); |
399 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]); |
400 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
401 |
|
|
double longueur=Distance.get_longueur2(); |
402 |
|
|
if (longueur<distance_ref) |
403 |
|
|
{ |
404 |
|
|
distance_ref=longueur; |
405 |
|
|
ref=i; |
406 |
|
|
} |
407 |
|
|
} |
408 |
|
|
|
409 |
|
|
double tii=tmin+ref*1./num_test*(tmax-tmin); |
410 |
|
|
int compteur=0; |
411 |
|
|
do |
412 |
|
|
{ |
413 |
|
|
compteur++; |
414 |
|
|
ti=tii; |
415 |
|
|
deriver_seconde(ti,ddxyz1,dxyz1,xyz1); |
416 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]); |
417 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz1[0],dxyz1[1],dxyz1[2]); |
418 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz1[0],ddxyz1[1],ddxyz1[2]); |
419 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
420 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2()); |
421 |
|
|
if (periodique==1) |
422 |
|
|
{ |
423 |
|
|
if (tii<get_tmin()) tii=get_tmax()-(get_tmin()-tii); |
424 |
|
|
if (tii>get_tmax()) tii=get_tmin()+(tii-get_tmax()); |
425 |
|
|
} |
426 |
|
|
else |
427 |
|
|
{ |
428 |
|
|
if (tii<get_tmin()) tii=get_tmin(); |
429 |
|
|
if (tii>get_tmax()) tii=get_tmax(); |
430 |
|
|
} |
431 |
|
|
eps=fabs(tii-ti); |
432 |
|
|
if (compteur>500) return 0; |
433 |
|
|
} |
434 |
|
|
while (eps>precision); |
435 |
|
|
t=ti; |
436 |
|
|
return 1; |
437 |
|
|
} |
438 |
|
|
|
439 |
|
|
double ST_B_SPLINE::get_tmin() |
440 |
|
|
{ |
441 |
|
|
return knots[0]; |
442 |
|
|
} |
443 |
|
|
double ST_B_SPLINE::get_tmax() |
444 |
|
|
{ |
445 |
|
|
int i=knots.size(); |
446 |
|
|
return knots[i-1]; |
447 |
|
|
} |
448 |
|
|
|
449 |
|
|
double equation_longueur(ST_B_SPLINE& bsp,double t) |
450 |
|
|
{ |
451 |
|
|
double dxyz[3]; |
452 |
|
|
bsp.deriver(t,dxyz); |
453 |
|
|
return sqrt(dxyz[0]*dxyz[0]+dxyz[1]*dxyz[1]+dxyz[2]*dxyz[2]); |
454 |
|
|
} |
455 |
|
|
|
456 |
|
|
|
457 |
|
|
double ST_B_SPLINE::get_longueur(double t1,double t2,double precis) |
458 |
|
|
{ |
459 |
|
|
TPL_FONCTION1<double,ST_B_SPLINE,double> longueur_bsp(*this,equation_longueur); |
460 |
|
|
return longueur_bsp.integrer_gauss_2(t1,t2); |
461 |
|
|
} |
462 |
|
|
|
463 |
|
|
|
464 |
|
|
int ST_B_SPLINE::est_periodique(void) |
465 |
|
|
{ |
466 |
|
|
return periodique; |
467 |
|
|
} |
468 |
|
|
double ST_B_SPLINE::get_periode(void) |
469 |
|
|
{ |
470 |
|
|
return periode; |
471 |
|
|
} |
472 |
|
|
|
473 |
|
|
int ST_B_SPLINE::get_type_geometrique(TPL_LISTE_ENTITE<double> ¶m) |
474 |
|
|
{ |
475 |
|
|
for (int i=0;i<nb_point-(degre+1);i++) |
476 |
|
|
{ |
477 |
|
|
param.ajouter(knots[i]); |
478 |
|
|
} |
479 |
|
|
double xyz[3]; |
480 |
|
|
for (int i=0;i<nb_point;i++) |
481 |
|
|
{ |
482 |
|
|
xyz[0]=ptsctr[3*i]; |
483 |
|
|
xyz[1]=ptsctr[3*i+1]; |
484 |
|
|
xyz[2]=ptsctr[3*i+2]; |
485 |
|
|
param.ajouter(xyz[0]); |
486 |
|
|
param.ajouter(xyz[1]); |
487 |
|
|
param.ajouter(xyz[2]); |
488 |
|
|
} |
489 |
|
|
for (int i=0;i<nb_point;i++) |
490 |
|
|
{ |
491 |
|
|
param.ajouter(poids[i]); |
492 |
|
|
} |
493 |
|
|
param.ajouter(degre); |
494 |
|
|
return MGCo_BSPLINE; |
495 |
|
|
} |
496 |
|
|
|
497 |
|
|
void ST_B_SPLINE::initialiser(ST_GESTIONNAIRE *gest) |
498 |
|
|
{ |
499 |
|
|
int i=indexptsctr.size(); |
500 |
|
|
ST_POINT* point1=gest->lst_point.getid(indexptsctr[0]); |
501 |
|
|
ST_POINT* point2=gest->lst_point.getid(indexptsctr[i-1]); |
502 |
|
|
double xyz1[3]; |
503 |
|
|
double xyz2[3]; |
504 |
|
|
point1->evaluer(xyz1); |
505 |
|
|
point2->evaluer(xyz2); |
506 |
|
|
periodique=0; |
507 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6)) |
508 |
|
|
{ |
509 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6)) |
510 |
|
|
{ |
511 |
|
|
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6)) |
512 |
|
|
periodique=1; |
513 |
|
|
} |
514 |
|
|
} |
515 |
|
|
|
516 |
|
|
if (periodique==1) |
517 |
|
|
{ |
518 |
|
|
int i=knots.size(); |
519 |
|
|
periode=(knots[i-1]-knots[0]); |
520 |
|
|
} |
521 |
|
|
else periode=0; |
522 |
|
|
|
523 |
|
|
int nbptsctr=indexptsctr.size(); |
524 |
|
|
for (int i=0;i<nbptsctr;i++) |
525 |
|
|
{ |
526 |
|
|
ST_POINT* stpoint=gest->lst_point.getid(indexptsctr[i]); |
527 |
|
|
double xyz[3]; |
528 |
|
|
stpoint->evaluer(xyz); |
529 |
|
|
ptsctr.insert(ptsctr.end(),xyz[0]); |
530 |
|
|
ptsctr.insert(ptsctr.end(),xyz[1]); |
531 |
|
|
ptsctr.insert(ptsctr.end(),xyz[2]); |
532 |
|
|
} |
533 |
|
|
} |
534 |
|
|
|
535 |
|
|
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
|
539 |
|
|
void ST_B_SPLINE::est_util(ST_GESTIONNAIRE* gest) |
540 |
|
|
{ |
541 |
|
|
util=true; |
542 |
|
|
for (int i=0;i<nb_point;i++) |
543 |
|
|
gest->lst_point.getid(indexptsctr[i])->est_util(gest); |
544 |
|
|
} |
545 |
|
|
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
void ST_B_SPLINE::get_param_NURBS(int& nb_param,TPL_LISTE_ENTITE<double> ¶m) |
550 |
|
|
{ |
551 |
|
|
|
552 |
|
|
// the order stock of the parameters is: |
553 |
|
|
// 1/ the variante type =1 (dimension one) |
554 |
|
|
// 2/ the order of the spline in two dirction the second direction is zero |
555 |
|
|
// 3/ the number of the control points |
556 |
|
|
// 4/ the knots vector |
557 |
|
|
// 5/ the control points cordinates in homogeneos forms |
558 |
|
|
|
559 |
|
|
// The first parameter indicate the code access |
560 |
|
|
param.ajouter(1); |
561 |
|
|
// The follewing two parameters of the list indicate the orders of the net points |
562 |
|
|
|
563 |
|
|
param.ajouter(degre+1); |
564 |
|
|
param.ajouter(0); |
565 |
|
|
|
566 |
|
|
// The follewing two parameters indicate the number of rows and colons of the control points |
567 |
|
|
// respectively to the two parameters directions |
568 |
|
|
|
569 |
|
|
param.ajouter(nb_point); |
570 |
|
|
param.ajouter(0); |
571 |
|
|
|
572 |
|
|
// this present the knot vector in the u-direction |
573 |
|
|
|
574 |
|
|
for (unsigned int i=0;i<knots.size();i++) |
575 |
|
|
{ |
576 |
|
|
param.ajouter(knots[i]); |
577 |
|
|
} |
578 |
|
|
|
579 |
|
|
// in the following we construct the control point vector |
580 |
|
|
|
581 |
|
|
for (unsigned int pt=0;pt<ptsctr.size();pt++) |
582 |
|
|
{ |
583 |
|
|
param.ajouter(ptsctr[pt]); |
584 |
|
|
} |
585 |
|
|
nb_param=5+knots.size(); |
586 |
|
|
} |