1 |
foucault |
27 |
//------------------------------------------------------------ |
2 |
|
|
//------------------------------------------------------------ |
3 |
|
|
// MAGiC |
4 |
francois |
283 |
// Jean Christophe Cuilli�re et Vincent FRANCOIS |
5 |
|
|
// D�partement de G�nie M�canique - UQTR |
6 |
foucault |
27 |
//------------------------------------------------------------ |
7 |
francois |
283 |
// Le projet MAGIC est un projet de recherche du d�partement |
8 |
|
|
// de g�nie m�canique de l'Universit� du Qu�bec � |
9 |
|
|
// Trois Rivi�res |
10 |
|
|
// Les librairies ne peuvent �tre utilis�es sans l'accord |
11 |
foucault |
27 |
// des auteurs (contact : francois@uqtr.ca) |
12 |
|
|
//------------------------------------------------------------ |
13 |
|
|
//------------------------------------------------------------ |
14 |
|
|
// |
15 |
|
|
// stbspline.cpp |
16 |
|
|
// |
17 |
|
|
//------------------------------------------------------------ |
18 |
|
|
//------------------------------------------------------------ |
19 |
|
|
// COPYRIGHT 2000 |
20 |
francois |
283 |
// Version du 02/03/2006 � 11H24 |
21 |
foucault |
27 |
//------------------------------------------------------------ |
22 |
|
|
//------------------------------------------------------------ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h" |
26 |
|
|
|
27 |
|
|
#include "stbspline.h" |
28 |
francois |
283 |
#include <vector> |
29 |
foucault |
27 |
#include "st_gestionnaire.h" |
30 |
|
|
#include "tpl_fonction.h" |
31 |
|
|
#include "constantegeo.h" |
32 |
|
|
|
33 |
|
|
#include <math.h> |
34 |
|
|
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
ST_B_SPLINE::ST_B_SPLINE(long LigneCourante,std::string idori,int bs_degre,std::vector<int> bs_indexptsctr,std::vector<int> bs_knots_multiplicities,std::vector<double> bs_knots):ST_COURBE(LigneCourante,idori),degre(bs_degre) |
38 |
|
|
{ |
39 |
francois |
283 |
int nb=bs_knots_multiplicities.size(); |
40 |
|
|
for (int i=0;i<nb;i++) |
41 |
|
|
{ |
42 |
foucault |
27 |
for (int j=0;j<bs_knots_multiplicities[i];j++) |
43 |
francois |
283 |
knots.insert(knots.end(),bs_knots[i]); |
44 |
|
|
} |
45 |
|
|
nb_point=bs_indexptsctr.size(); |
46 |
|
|
for (int i=0;i<nb_point;i++) |
47 |
|
|
{ |
48 |
foucault |
27 |
indexptsctr.insert(indexptsctr.end(),bs_indexptsctr[i]); |
49 |
|
|
//poids.insert(poids.end(),1.); |
50 |
francois |
283 |
} |
51 |
foucault |
27 |
|
52 |
|
|
} |
53 |
|
|
|
54 |
|
|
ST_B_SPLINE::ST_B_SPLINE(int bs_degre,std::vector<double> &vec_knots,std::vector<double> &vec_point,std::vector<double> &vec_poids):ST_COURBE(),degre(bs_degre) |
55 |
|
|
{ |
56 |
francois |
283 |
int nb=vec_knots.size(); |
57 |
|
|
for (int i=0;i<nb;i++) |
58 |
foucault |
27 |
knots.insert(knots.end(),vec_knots[i]); |
59 |
francois |
283 |
nb_point=vec_point.size()/3; |
60 |
|
|
for (int i=0;i<nb_point;i++) |
61 |
|
|
{ |
62 |
|
|
double w=vec_poids[i]; |
63 |
|
|
double x=vec_point[3*i]; |
64 |
|
|
double y=vec_point[3*i+1]; |
65 |
|
|
double z=vec_point[3*i+2]; |
66 |
|
|
OT_VECTEUR_4D pt(w*x,w*y,w*z,w); |
67 |
|
|
ptsctr.push_back(pt); |
68 |
|
|
} |
69 |
|
|
double xyz1[3]; |
70 |
|
|
double xyz2[3]; |
71 |
|
|
xyz1[0]=vec_point[0]; |
72 |
|
|
xyz1[1]=vec_point[1]; |
73 |
|
|
xyz1[2]=vec_point[2]; |
74 |
|
|
xyz2[0]=vec_point[3*nb_point-3]; |
75 |
|
|
xyz2[1]=vec_point[3*nb_point-2]; |
76 |
|
|
xyz2[2]=vec_point[3*nb_point-1]; |
77 |
|
|
periodique=0; |
78 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6)) |
79 |
|
|
{ |
80 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6)) |
81 |
foucault |
27 |
{ |
82 |
francois |
283 |
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6)) |
83 |
foucault |
27 |
periodique=1; |
84 |
|
|
} |
85 |
francois |
283 |
} |
86 |
foucault |
27 |
|
87 |
francois |
283 |
if (periodique==1) |
88 |
|
|
{ |
89 |
foucault |
27 |
int i=knots.size(); |
90 |
|
|
periode=(knots[i-1]-knots[0]); |
91 |
francois |
283 |
} |
92 |
|
|
else periode=0; |
93 |
foucault |
27 |
} |
94 |
|
|
|
95 |
|
|
ST_B_SPLINE::~ST_B_SPLINE() |
96 |
|
|
{ |
97 |
|
|
} |
98 |
|
|
|
99 |
|
|
int ST_B_SPLINE::get_intervalle(int nb_point, int degre, double t, std::vector<double> &knots) |
100 |
|
|
{ |
101 |
francois |
283 |
int inter; |
102 |
|
|
if (OPERATEUR::egal(t,knots[nb_point],1E-10)==1) inter=nb_point-1; |
103 |
|
|
else if (OPERATEUR::egal(t,knots[degre],1E-10)==1) inter=degre; |
104 |
|
|
else |
105 |
|
|
{ |
106 |
foucault |
27 |
int low=degre; |
107 |
|
|
int high=nb_point+1; |
108 |
|
|
int mid=((low+high)/2); |
109 |
|
|
while ((t<knots[mid-1]) || (t>=knots[mid])) |
110 |
francois |
283 |
{ |
111 |
|
|
if (t<knots[mid-1]) high=mid; |
112 |
|
|
else low=mid; |
113 |
|
|
mid=(low+high)/2; |
114 |
|
|
} |
115 |
foucault |
27 |
inter=mid-1; |
116 |
francois |
283 |
} |
117 |
|
|
return inter; |
118 |
foucault |
27 |
} |
119 |
|
|
|
120 |
francois |
283 |
void ST_B_SPLINE::binomialCoef(double * Bin, int d) { |
121 |
|
|
int n,k; |
122 |
|
|
// Setup the first line |
123 |
|
|
Bin[0] = 1.0 ; |
124 |
|
|
for (k=d-1;k>0;--k) |
125 |
|
|
Bin[k] = 0.0 ; |
126 |
|
|
// Setup the other lines |
127 |
|
|
for (n=0;n<d-1;n++) { |
128 |
|
|
Bin[(n+1)*d+0] = 1.0 ; |
129 |
|
|
for (k=1;k<d;k++) |
130 |
|
|
if (n+1<k) |
131 |
|
|
Bin[(n+1)*d+k] = 0.0 ; |
132 |
|
|
else |
133 |
|
|
Bin[(n+1)*d+k] = Bin[n*d+k] + Bin[n*d+k-1] ; |
134 |
|
|
} |
135 |
foucault |
27 |
} |
136 |
|
|
|
137 |
|
|
void ST_B_SPLINE::get_valeur_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n) |
138 |
|
|
{ |
139 |
francois |
283 |
double saved; |
140 |
|
|
grand_n[0]=1.0; |
141 |
|
|
double gauche[16]; |
142 |
|
|
double droite[16]; |
143 |
|
|
for (int j=1;j<=degre;j++) |
144 |
|
|
{ |
145 |
foucault |
27 |
gauche[j-1]= t-knots[inter-j+1]; |
146 |
|
|
droite[j-1]=knots[inter+j]-t; |
147 |
|
|
saved=0.0; |
148 |
|
|
for (int r=0;r<j;r++) |
149 |
francois |
283 |
{ |
150 |
|
|
double temp=grand_n[r]/(droite[r]+ gauche[j-r-1]); |
151 |
|
|
grand_n[r]=saved+droite[r]* temp; |
152 |
|
|
saved=gauche[j-r-1]*temp; |
153 |
|
|
} |
154 |
foucault |
27 |
grand_n[j]=saved; |
155 |
francois |
283 |
} |
156 |
foucault |
27 |
} |
157 |
|
|
|
158 |
|
|
|
159 |
|
|
void ST_B_SPLINE::evaluer(double t,double *xyz) |
160 |
|
|
{ |
161 |
francois |
283 |
if (est_periodique()) |
162 |
|
|
{ |
163 |
|
|
double tmin=get_tmin(); |
164 |
|
|
double tmax=get_tmax(); |
165 |
|
|
while (t>tmax) t -= periode; |
166 |
|
|
while (t<tmin) t += periode; |
167 |
|
|
} |
168 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots); |
169 |
|
|
double grand_n[256]; |
170 |
|
|
get_valeur_fonction(inter,t,degre,knots,grand_n); |
171 |
foucault |
27 |
|
172 |
francois |
283 |
OT_VECTEUR_4D sp(0,0,0,0) ; |
173 |
|
|
for (int j=0; j<=degre; j++) |
174 |
|
|
{ |
175 |
|
|
sp += grand_n[j] * ptsctr[inter-degre+j]; |
176 |
|
|
} |
177 |
|
|
|
178 |
|
|
// transform homogeneous coordinates to 3D coordinates |
179 |
|
|
for (int i=0; i<3; i++) |
180 |
|
|
xyz[i] = sp[i]/sp.w(); |
181 |
foucault |
27 |
} |
182 |
francois |
283 |
/* |
183 |
foucault |
27 |
void ST_B_SPLINE::get_tout_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n) |
184 |
|
|
{ |
185 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j)) |
186 |
|
|
double saved; |
187 |
|
|
grand_n(0,0)=1.0; |
188 |
|
|
double gauche[16]; |
189 |
|
|
double droite[16]; |
190 |
|
|
for (int j=1;j<=degre;j++) |
191 |
francois |
283 |
{ |
192 |
|
|
gauche[j-1]= t-knots[inter-j+1]; |
193 |
|
|
droite[j-1]=knots[inter+j]-t; |
194 |
|
|
saved=0.0; |
195 |
|
|
for (int r=0;r<j;r++) |
196 |
|
|
{ |
197 |
|
|
grand_n(j,r)=(droite[r]+ gauche[j-r-1]); |
198 |
|
|
double temp = grand_n(r,j-1)/grand_n(j,r); |
199 |
foucault |
27 |
|
200 |
francois |
283 |
grand_n(r,j)= saved+droite[r]*temp; |
201 |
|
|
saved=gauche[j-r-1]*temp; |
202 |
|
|
} |
203 |
|
|
grand_n(j,j)=saved; |
204 |
|
|
} |
205 |
foucault |
27 |
#undef grand_n // enlever (i,j) |
206 |
|
|
} */ |
207 |
|
|
|
208 |
|
|
void ST_B_SPLINE::deriver_fonction(int inter,double t,int degre,int dd,std::vector<double> &knots,double *f_deriver) |
209 |
|
|
{ |
210 |
|
|
#define f_deriver(i,j) (*(f_deriver+(i)*(degre+1)+j)) |
211 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j)) |
212 |
|
|
#define a(i,j) (*(a+(i)*(dd+1)+j)) |
213 |
francois |
283 |
double *grand_n=new double[(degre+1)*(degre+1)]; |
214 |
|
|
double saved; |
215 |
|
|
grand_n(0,0)=1.0; |
216 |
|
|
double *gauche=new double[degre+1]; |
217 |
|
|
double *droite=new double[degre+1]; |
218 |
|
|
for (int j=1;j<=degre;j++) |
219 |
|
|
{ |
220 |
foucault |
27 |
gauche[j]= t-knots[inter-j+1]; |
221 |
|
|
droite[j]=knots[inter+j]-t; |
222 |
|
|
saved=0.0; |
223 |
|
|
for (int r=0;r<j;r++) |
224 |
francois |
283 |
{ |
225 |
|
|
grand_n(j,r)=(droite[r+1]+ gauche[j-r]); |
226 |
|
|
double temp = grand_n(r,j-1)/grand_n(j,r); |
227 |
foucault |
27 |
|
228 |
francois |
283 |
grand_n(r,j)= saved+droite[r+1]*temp; |
229 |
|
|
saved=gauche[j-r]*temp; |
230 |
|
|
} |
231 |
foucault |
27 |
grand_n(j,j)=saved; |
232 |
francois |
283 |
} |
233 |
|
|
for (int j=0;j<=degre;j++) |
234 |
|
|
{ |
235 |
foucault |
27 |
f_deriver(0,j)= grand_n(j,degre); |
236 |
francois |
283 |
} |
237 |
|
|
double *a=new double[(degre+1)*(degre+1)]; |
238 |
|
|
for (int r=0;r<=degre;r++) |
239 |
|
|
{ |
240 |
|
|
int s1=0; |
241 |
|
|
int s2=1; |
242 |
foucault |
27 |
a(0,0)=1.0; |
243 |
|
|
for (int k=1;k<=dd; k++) |
244 |
francois |
283 |
{ |
245 |
|
|
double d=0.0; |
246 |
|
|
int rk=r-k; |
247 |
|
|
int pk=degre-k; |
248 |
|
|
if (r>=k) |
249 |
|
|
{ |
250 |
|
|
a(s2,0)=a(s1,0)/grand_n(pk+1,rk); |
251 |
|
|
d= a(s2,0)* grand_n(rk,pk); |
252 |
|
|
} |
253 |
|
|
int j1; |
254 |
|
|
int j2; |
255 |
|
|
if (rk>=-1) j1=1; |
256 |
|
|
else j1= -rk; |
257 |
|
|
if (r-1<=pk) j2=k-1; |
258 |
|
|
else j2=degre-r; |
259 |
|
|
for (int j=j1;j<=j2;j++) |
260 |
|
|
{ |
261 |
|
|
a(s2,j) = (a(s1,j)-a(s1,j-1))/grand_n(pk+1,rk+j); |
262 |
|
|
d+=a(s2,j)*grand_n(rk+j,pk); |
263 |
|
|
} |
264 |
|
|
if (r<=pk) |
265 |
|
|
{ |
266 |
|
|
a(s2,k) = -a(s1,k-1)/grand_n(pk+1,r); |
267 |
|
|
d+=a(s2,k)*grand_n(r,pk); |
268 |
|
|
} |
269 |
|
|
f_deriver(k,r)=d; |
270 |
|
|
int j=s1; |
271 |
|
|
s1=s2; |
272 |
|
|
s2=j; |
273 |
foucault |
27 |
} |
274 |
francois |
283 |
} |
275 |
|
|
int r=degre; |
276 |
|
|
for (int k=1;k<=dd;k++) |
277 |
|
|
{ |
278 |
|
|
for (int j=0;j<=degre;j++) |
279 |
foucault |
27 |
{ |
280 |
francois |
283 |
f_deriver(k,j)*=r; |
281 |
|
|
} |
282 |
foucault |
27 |
r*=(degre-k); |
283 |
francois |
283 |
} |
284 |
|
|
delete [] a; |
285 |
|
|
delete [] grand_n; |
286 |
|
|
delete [] gauche; |
287 |
|
|
delete [] droite; |
288 |
foucault |
27 |
#undef f_deriver |
289 |
|
|
#undef grand_n |
290 |
francois |
283 |
#undef a |
291 |
foucault |
27 |
} |
292 |
|
|
|
293 |
|
|
void ST_B_SPLINE::deriver_bs_kieme(int nb_point,int degre,std::vector<double> &knots,std::vector<OT_VECTEUR_4D> &ptsctr_x,double t,int d, OT_VECTEUR_4D * CK) |
294 |
|
|
{ |
295 |
francois |
283 |
int du = std::min(d,degre); |
296 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots); |
297 |
|
|
double derF[256]; |
298 |
|
|
deriver_fonction(inter, t,degre,du,knots,derF); |
299 |
foucault |
27 |
|
300 |
|
|
#define derF(i,j) (*(derF+(i)*(degre+1)+j)) |
301 |
francois |
283 |
for (int k=du;k>=0;--k) |
302 |
|
|
{ |
303 |
|
|
CK[k] = OT_VECTEUR_4D(0,0,0,0); |
304 |
|
|
for (int j=degre;j>=0;--j) |
305 |
foucault |
27 |
{ |
306 |
francois |
283 |
CK[k] += derF(k,j)*ptsctr_x[inter-degre+j]; |
307 |
foucault |
27 |
} |
308 |
francois |
283 |
} |
309 |
foucault |
27 |
#undef derF |
310 |
|
|
} |
311 |
|
|
|
312 |
|
|
|
313 |
|
|
|
314 |
|
|
void ST_B_SPLINE::deriver_kieme(double t,int d, double *CK_x,double *CK_y,double *CK_z) |
315 |
|
|
{ |
316 |
francois |
283 |
int i,k; |
317 |
|
|
OT_VECTEUR_4D dersW[16], ders[16]; |
318 |
|
|
OT_VECTEUR_4D v; |
319 |
|
|
deriver_bs_kieme(nb_point, degre, knots, ptsctr, t, d, dersW); |
320 |
|
|
|
321 |
|
|
double Bin[256]; |
322 |
|
|
int dbin=d+1; |
323 |
|
|
binomialCoef(Bin, dbin); |
324 |
foucault |
27 |
#define Bin(i,j) (*(Bin+(i)*(dbin)+j)) |
325 |
|
|
|
326 |
francois |
283 |
for (k=0;k<=d;k++) |
327 |
foucault |
27 |
{ |
328 |
|
|
ders[k] = dersW[k]; |
329 |
francois |
283 |
for (i=k ;i>0 ;--i) |
330 |
foucault |
27 |
ders[k] -= (Bin(k,i)*dersW[i].w())*ders[k-i]; |
331 |
|
|
ders[k]/=dersW[0].w(); |
332 |
|
|
} |
333 |
|
|
|
334 |
|
|
for (int i=0; i<=d; i++) |
335 |
|
|
{ |
336 |
|
|
CK_x[i]=ders[i][0]; |
337 |
|
|
CK_y[i]=ders[i][1]; |
338 |
|
|
CK_z[i]=ders[i][2]; |
339 |
|
|
} |
340 |
|
|
} |
341 |
|
|
|
342 |
|
|
void ST_B_SPLINE::deriver(double t,double *dxyz) |
343 |
|
|
{ |
344 |
francois |
283 |
if (est_periodique()) |
345 |
|
|
{ |
346 |
|
|
double tmin=get_tmin(); |
347 |
|
|
double tmax=get_tmax(); |
348 |
|
|
while (t>tmax) t -= periode; |
349 |
|
|
while (t<tmin) t += periode; |
350 |
|
|
} |
351 |
|
|
double CK_x[2]; |
352 |
|
|
double CK_y[2]; |
353 |
|
|
double CK_z[2]; |
354 |
|
|
deriver_kieme(t,1,CK_x,CK_y,CK_z); |
355 |
|
|
dxyz[0]=CK_x[1]; |
356 |
|
|
dxyz[1]=CK_y[1]; |
357 |
|
|
dxyz[2]=CK_z[1]; |
358 |
foucault |
27 |
} |
359 |
|
|
|
360 |
|
|
void ST_B_SPLINE::deriver_seconde(double t,double *ddxyz,double* dxyz ,double* xyz ) |
361 |
|
|
{ |
362 |
francois |
283 |
if (est_periodique()) |
363 |
|
|
{ |
364 |
|
|
double tmin=get_tmin(); |
365 |
|
|
double tmax=get_tmax(); |
366 |
|
|
while (t>tmax) t -= periode; |
367 |
|
|
while (t<tmin) t += periode; |
368 |
|
|
} |
369 |
|
|
double CK_x[3]; |
370 |
|
|
double CK_y[3]; |
371 |
|
|
double CK_z[3]; |
372 |
|
|
deriver_kieme(t,2,CK_x,CK_y,CK_z); |
373 |
|
|
ddxyz[0]=CK_x[2]; |
374 |
|
|
ddxyz[1]=CK_y[2]; |
375 |
|
|
ddxyz[2]=CK_z[2]; |
376 |
|
|
if (dxyz!=NULL) |
377 |
|
|
{ |
378 |
foucault |
27 |
dxyz[0]=CK_x[1]; |
379 |
|
|
dxyz[1]=CK_y[1]; |
380 |
|
|
dxyz[2]=CK_z[1]; |
381 |
francois |
283 |
} |
382 |
|
|
if (xyz!=NULL) |
383 |
|
|
{ |
384 |
foucault |
27 |
xyz[0]=CK_x[0]; |
385 |
|
|
xyz[1]=CK_y[0]; |
386 |
|
|
xyz[2]=CK_z[0]; |
387 |
francois |
283 |
} |
388 |
foucault |
27 |
} |
389 |
|
|
|
390 |
|
|
|
391 |
|
|
|
392 |
|
|
void ST_B_SPLINE::inverser(double& t,double *xyz,double precision) |
393 |
|
|
{ |
394 |
francois |
283 |
int code; |
395 |
|
|
int num_point=nb_point; |
396 |
|
|
do |
397 |
|
|
{ |
398 |
foucault |
27 |
code=inverser2(t,xyz,num_point,precision); |
399 |
|
|
num_point=num_point*2; |
400 |
francois |
283 |
} |
401 |
|
|
while (code==0 && num_point < 100000); |
402 |
foucault |
27 |
} |
403 |
|
|
|
404 |
|
|
int ST_B_SPLINE::inverser2(double& t,double *xyz,int num_test,double precision) |
405 |
|
|
{ |
406 |
francois |
283 |
double xyz1[3]; |
407 |
|
|
double dxyz1[3]; |
408 |
|
|
double ddxyz1[3]; |
409 |
|
|
double ti; |
410 |
|
|
double eps; |
411 |
|
|
double tmin=get_tmin(); |
412 |
|
|
double tmax=get_tmax(); |
413 |
|
|
OT_VECTEUR_3D Pt(xyz[0],xyz[1],xyz[2]); |
414 |
|
|
double distance_ref=1e308; |
415 |
|
|
int ref; |
416 |
foucault |
27 |
|
417 |
francois |
283 |
for (int i=0;i<num_test+1;i++) |
418 |
|
|
{ |
419 |
foucault |
27 |
double t=tmin+i*1./num_test*(tmax-tmin); |
420 |
|
|
evaluer(t,xyz1); |
421 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]); |
422 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
423 |
|
|
double longueur=Distance.get_longueur2(); |
424 |
|
|
if (longueur<distance_ref) |
425 |
francois |
283 |
{ |
426 |
|
|
distance_ref=longueur; |
427 |
|
|
ref=i; |
428 |
foucault |
27 |
} |
429 |
francois |
283 |
} |
430 |
foucault |
27 |
|
431 |
francois |
283 |
double tii=tmin+ref*1./num_test*(tmax-tmin); |
432 |
|
|
int compteur=0; |
433 |
|
|
do |
434 |
|
|
{ |
435 |
foucault |
27 |
compteur++; |
436 |
|
|
ti=tii; |
437 |
|
|
deriver_seconde(ti,ddxyz1,dxyz1,xyz1); |
438 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]); |
439 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz1[0],dxyz1[1],dxyz1[2]); |
440 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz1[0],ddxyz1[1],ddxyz1[2]); |
441 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
442 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2()); |
443 |
|
|
if (periodique==1) |
444 |
francois |
283 |
{ |
445 |
|
|
if (tii<get_tmin()) tii=get_tmax()-(get_tmin()-tii); |
446 |
|
|
if (tii>get_tmax()) tii=get_tmin()+(tii-get_tmax()); |
447 |
|
|
} |
448 |
foucault |
27 |
else |
449 |
francois |
283 |
{ |
450 |
|
|
if (tii<get_tmin()) tii=get_tmin(); |
451 |
|
|
if (tii>get_tmax()) tii=get_tmax(); |
452 |
|
|
} |
453 |
foucault |
27 |
eps=fabs(tii-ti); |
454 |
|
|
if (compteur>500) return 0; |
455 |
francois |
283 |
} |
456 |
|
|
while (eps>precision); |
457 |
|
|
t=ti; |
458 |
|
|
return 1; |
459 |
foucault |
27 |
} |
460 |
|
|
|
461 |
|
|
double ST_B_SPLINE::get_tmin() |
462 |
|
|
{ |
463 |
francois |
283 |
return knots[0]; |
464 |
foucault |
27 |
} |
465 |
|
|
double ST_B_SPLINE::get_tmax() |
466 |
|
|
{ |
467 |
francois |
283 |
int i=knots.size(); |
468 |
|
|
return knots[i-1]; |
469 |
foucault |
27 |
} |
470 |
|
|
|
471 |
|
|
double equation_longueur(ST_B_SPLINE& bsp,double t) |
472 |
francois |
283 |
{ |
473 |
|
|
double dxyz[3]; |
474 |
|
|
bsp.deriver(t,dxyz); |
475 |
|
|
return sqrt(dxyz[0]*dxyz[0]+dxyz[1]*dxyz[1]+dxyz[2]*dxyz[2]); |
476 |
|
|
} |
477 |
foucault |
27 |
|
478 |
|
|
|
479 |
|
|
double ST_B_SPLINE::get_longueur(double t1,double t2,double precis) |
480 |
|
|
{ |
481 |
francois |
283 |
TPL_FONCTION1<double,ST_B_SPLINE,double> longueur_bsp(*this,equation_longueur); |
482 |
|
|
return longueur_bsp.integrer_gauss_2(t1,t2); |
483 |
foucault |
27 |
} |
484 |
|
|
|
485 |
|
|
|
486 |
|
|
int ST_B_SPLINE::est_periodique(void) |
487 |
|
|
{ |
488 |
francois |
283 |
return periodique; |
489 |
foucault |
27 |
} |
490 |
|
|
double ST_B_SPLINE::get_periode(void) |
491 |
|
|
{ |
492 |
francois |
283 |
return periode; |
493 |
foucault |
27 |
} |
494 |
|
|
|
495 |
|
|
int ST_B_SPLINE::get_type_geometrique(TPL_LISTE_ENTITE<double> ¶m) |
496 |
|
|
{ |
497 |
francois |
283 |
for (int i=0;i<nb_point-(degre+1);i++) |
498 |
|
|
{ |
499 |
|
|
param.ajouter(knots[i]); |
500 |
|
|
} |
501 |
|
|
double xyz[3]; |
502 |
|
|
for (int i=0;i<nb_point;i++) |
503 |
|
|
{ |
504 |
|
|
xyz[0]=ptsctr[i].x()/ptsctr[i].w(); |
505 |
|
|
xyz[1]=ptsctr[i].y()/ptsctr[i].w(); |
506 |
|
|
xyz[2]=ptsctr[i].z()/ptsctr[i].w(); |
507 |
|
|
param.ajouter(xyz[0]); |
508 |
|
|
param.ajouter(xyz[1]); |
509 |
|
|
param.ajouter(xyz[2]); |
510 |
|
|
} |
511 |
|
|
for (int i=0;i<nb_point;i++) |
512 |
|
|
{ |
513 |
|
|
param.ajouter(ptsctr[i].w()); |
514 |
|
|
} |
515 |
|
|
param.ajouter(degre); |
516 |
|
|
return MGCo_BSPLINE; |
517 |
foucault |
27 |
} |
518 |
|
|
|
519 |
|
|
void ST_B_SPLINE::initialiser(ST_GESTIONNAIRE *gest) |
520 |
|
|
{ |
521 |
francois |
283 |
int i=indexptsctr.size(); |
522 |
|
|
ST_POINT* point1=gest->lst_point.getid(indexptsctr[0]); |
523 |
|
|
ST_POINT* point2=gest->lst_point.getid(indexptsctr[i-1]); |
524 |
|
|
double xyz1[3]; |
525 |
|
|
double xyz2[3]; |
526 |
|
|
point1->evaluer(xyz1); |
527 |
|
|
point2->evaluer(xyz2); |
528 |
|
|
periodique=0; |
529 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6)) |
530 |
|
|
{ |
531 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6)) |
532 |
foucault |
27 |
{ |
533 |
francois |
283 |
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6)) |
534 |
foucault |
27 |
periodique=1; |
535 |
|
|
} |
536 |
francois |
283 |
} |
537 |
foucault |
27 |
|
538 |
francois |
283 |
if (periodique==1) |
539 |
|
|
{ |
540 |
foucault |
27 |
int i=knots.size(); |
541 |
|
|
periode=(knots[i-1]-knots[0]); |
542 |
francois |
283 |
} |
543 |
|
|
else periode=0; |
544 |
foucault |
27 |
|
545 |
francois |
283 |
int nbptsctr=indexptsctr.size(); |
546 |
|
|
for (int i=0;i<nbptsctr;i++) |
547 |
|
|
{ |
548 |
foucault |
27 |
ST_POINT* stpoint=gest->lst_point.getid(indexptsctr[i]); |
549 |
|
|
double xyz[3]; |
550 |
|
|
stpoint->evaluer(xyz); |
551 |
|
|
OT_VECTEUR_4D pt(xyz[0],xyz[1],xyz[2],1); |
552 |
|
|
ptsctr.insert(ptsctr.end(),pt); |
553 |
francois |
283 |
} |
554 |
foucault |
27 |
} |
555 |
|
|
|
556 |
|
|
|
557 |
|
|
|
558 |
|
|
|
559 |
|
|
|
560 |
|
|
void ST_B_SPLINE::est_util(ST_GESTIONNAIRE* gest) |
561 |
|
|
{ |
562 |
francois |
283 |
util=true; |
563 |
|
|
for (int i=0;i<nb_point;i++) |
564 |
foucault |
27 |
gest->lst_point.getid(indexptsctr[i])->est_util(gest); |
565 |
|
|
} |
566 |
|
|
|
567 |
|
|
|
568 |
|
|
|
569 |
|
|
|
570 |
|
|
void ST_B_SPLINE::get_param_NURBS(int& indx_premier_ptctr,TPL_LISTE_ENTITE<double> ¶m) |
571 |
|
|
{ |
572 |
|
|
|
573 |
|
|
// the order stock of the parameters is: |
574 |
|
|
// 1/ the variante type =1 (dimension one) |
575 |
|
|
// 2/ the order of the spline in two dirction the second direction is zero |
576 |
|
|
// 3/ the number of the control points |
577 |
|
|
// 4/ the knots vector |
578 |
|
|
// 5/ the control points cordinates in homogeneos forms |
579 |
|
|
|
580 |
|
|
// The first parameter indicate the code access |
581 |
francois |
283 |
param.ajouter(1); |
582 |
foucault |
27 |
// The follewing two parameters of the list indicate the orders of the net points |
583 |
|
|
|
584 |
francois |
283 |
param.ajouter(degre+1); |
585 |
|
|
param.ajouter(0); |
586 |
foucault |
27 |
|
587 |
|
|
// The follewing two parameters indicate the number of rows and colons of the control points |
588 |
|
|
// respectively to the two parameters directions |
589 |
|
|
|
590 |
francois |
283 |
param.ajouter(nb_point); |
591 |
|
|
param.ajouter(0); |
592 |
foucault |
27 |
|
593 |
|
|
// this present the knot vector in the u-direction |
594 |
|
|
|
595 |
francois |
283 |
for (unsigned int i=0;i<knots.size();i++) |
596 |
|
|
{ |
597 |
|
|
param.ajouter(knots[i]); |
598 |
|
|
} |
599 |
foucault |
27 |
|
600 |
|
|
// in the following we construct the control point vector |
601 |
|
|
|
602 |
francois |
283 |
for (unsigned int pt=0;pt<ptsctr.size();pt++) |
603 |
|
|
{ |
604 |
|
|
double w=ptsctr[pt].w(); |
605 |
|
|
double inv_w=1/w; |
606 |
|
|
double x=ptsctr[pt].x()*inv_w; |
607 |
|
|
double y=ptsctr[pt].y()*inv_w; |
608 |
|
|
double z=ptsctr[pt].z()*inv_w; |
609 |
|
|
param.ajouter(x); |
610 |
|
|
param.ajouter(y); |
611 |
|
|
param.ajouter(z); |
612 |
|
|
param.ajouter(w); |
613 |
|
|
} |
614 |
|
|
indx_premier_ptctr=5+knots.size(); |
615 |
|
|
} |