1 |
|
5 |
//------------------------------------------------------------
|
2 |
|
|
//------------------------------------------------------------
|
3 |
|
|
// MAGiC
|
4 |
|
|
// Jean Christophe Cuillière et Vincent FRANCOIS
|
5 |
|
|
// Département de Génie Mécanique - UQTR
|
6 |
|
|
//------------------------------------------------------------
|
7 |
|
|
// Le projet MAGIC est un projet de recherche du département
|
8 |
|
|
// de génie mécanique de l'Université du Québec à
|
9 |
|
|
// Trois Rivières
|
10 |
|
|
// Les librairies ne peuvent être utilisées sans l'accord
|
11 |
|
|
// des auteurs (contact : francois@uqtr.ca)
|
12 |
|
|
//------------------------------------------------------------
|
13 |
|
|
//------------------------------------------------------------
|
14 |
|
|
//
|
15 |
|
|
// ot_systeme.cpp
|
16 |
|
|
//
|
17 |
|
|
//------------------------------------------------------------
|
18 |
|
|
//------------------------------------------------------------
|
19 |
|
|
// COPYRIGHT 2000
|
20 |
|
|
// Version du 02/03/2006 à 11H23
|
21 |
|
|
//------------------------------------------------------------
|
22 |
|
|
//------------------------------------------------------------
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h"
|
26 |
|
|
|
27 |
|
|
#pragma hdrstop
|
28 |
|
|
#include <stdlib.h>
|
29 |
|
|
#include <math.h>
|
30 |
|
|
#include "ot_systeme.h"
|
31 |
|
|
#include "ot_mathematique.h"
|
32 |
|
|
|
33 |
|
|
//---------------------------------------------------------------------------
|
34 |
|
|
|
35 |
|
|
OT_SYSTEME::OT_SYSTEME()
|
36 |
|
|
{
|
37 |
|
|
}
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
|
41 |
|
|
OT_SYSTEME::~OT_SYSTEME()
|
42 |
|
|
{
|
43 |
|
|
}
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
int OT_SYSTEME::resoud_gauss(double *a,double* b,double *x,int n)
|
47 |
|
|
{
|
48 |
|
|
double *aaug=new double[(n+1)*n];
|
49 |
|
|
#define a(i,j) (*(a+(i)*(n)+j))
|
50 |
|
|
#define aaug(i,j) (*(aaug+(i)*(n+1)+j))
|
51 |
|
|
for (int i=0;i<n;i++)
|
52 |
|
|
for (int j=0;j<n;j++)
|
53 |
|
|
aaug(i,j)=a(i,j);
|
54 |
|
|
for (int k=0;k<n;k++)
|
55 |
|
|
aaug(k,n)=b[k];
|
56 |
|
|
for (int j=0;j<n-1;j++)
|
57 |
|
|
{
|
58 |
|
|
// recherche le pivot
|
59 |
|
|
double pvt=fabs(aaug(j,j));
|
60 |
|
|
int ligne_pivot_debut=j;
|
61 |
|
|
int ligne_pivot=j;
|
62 |
|
|
|
63 |
|
|
for (int i=j+1;i<n;i++)
|
64 |
|
|
if (fabs(aaug(i,j))>pvt)
|
65 |
|
|
{
|
66 |
|
|
pvt=fabs(aaug(i,j));
|
67 |
|
|
ligne_pivot=i;
|
68 |
|
|
}
|
69 |
|
|
if (ligne_pivot!=ligne_pivot_debut) // trouver meilleur
|
70 |
|
|
{
|
71 |
|
|
for (int col=j;col<n+1;col++)
|
72 |
|
|
{
|
73 |
|
|
double temp=aaug(ligne_pivot_debut,col);
|
74 |
|
|
aaug(ligne_pivot_debut,col)=aaug(ligne_pivot,col);
|
75 |
|
|
aaug(ligne_pivot,col)=temp;
|
76 |
|
|
}
|
77 |
|
|
}
|
78 |
|
|
// j ai mon pivot max
|
79 |
|
|
if (fabs(aaug(j,j))< 0.00000000000001) {delete [] aaug;return 0;};
|
80 |
|
|
// j ai mon pivot max non nul
|
81 |
|
|
for (int ii=j+1;ii<n;ii++) aaug(ii,j)=aaug(ii,j)/aaug(j,j);
|
82 |
|
|
|
83 |
|
|
for (int iii=j+1;iii<n;iii++)
|
84 |
|
|
for (int k=j+1;k<n+1;k++)
|
85 |
|
|
aaug(iii,k)=aaug(iii,k)-aaug(iii,j)*aaug(j,k);
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
if (fabs(aaug(n-1,n-1))<0.00000000000001) {delete [] aaug;return 0;};
|
89 |
|
|
// back substitution
|
90 |
|
|
x[n-1]=aaug(n-1,n)/aaug(n-1,n-1);
|
91 |
|
|
for (int j=n-2;j>-1;j--)
|
92 |
|
|
{
|
93 |
|
|
x[j]=aaug(j,n);
|
94 |
|
|
for (int k=n-1;k>j;k--)
|
95 |
|
|
x[j]=x[j]-aaug(j,k)*x[k];
|
96 |
|
|
x[j]=x[j]/aaug(j,j);
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
delete [] aaug;
|
101 |
|
|
return 1;
|
102 |
|
|
#undef a // enlever le (i,j) pour enlever le warning
|
103 |
|
|
#undef aaug
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
int OT_SYSTEME::resoud_QR(double *m, double *b, double *x, int dim1,int dim2)
|
107 |
|
|
{
|
108 |
|
|
double *mat=new double[dim1*(dim2+1)];
|
109 |
|
|
double *r=new double[dim2];
|
110 |
|
|
#define mat(i,j) (*(mat+(i)*(dim2+1)+(j)))
|
111 |
|
|
#define m(i,j) (*(m+(i)*dim2+(j)))
|
112 |
|
|
// initialisation avec mat augmentée
|
113 |
|
|
for (int i=0;i<dim1;i++)
|
114 |
|
|
{
|
115 |
|
|
for (int j=0;j<dim2;j++)
|
116 |
|
|
mat(i,j)=m(i,j);
|
117 |
|
|
mat(i,dim2)=b[i];
|
118 |
|
|
}
|
119 |
|
|
// QR
|
120 |
|
|
for (int k=0;k<dim2;k++)
|
121 |
|
|
{
|
122 |
|
|
double somme=0.;
|
123 |
|
|
for (int i=k;i<dim1;i++)
|
124 |
|
|
somme=somme+mat(i,k)*mat(i,k);
|
125 |
|
|
double alpha=sqrt(somme);
|
126 |
|
|
double pivot=mat(k,k);
|
127 |
|
|
if (pivot>0) alpha=-alpha;
|
128 |
|
|
r[k]=alpha;
|
129 |
|
|
if (OPERATEUR::egal(alpha,0.,0.000001))
|
130 |
|
|
{
|
131 |
|
|
delete [] mat;
|
132 |
|
|
delete [] r;
|
133 |
|
|
return 0;
|
134 |
|
|
}
|
135 |
|
|
double beta=somme-pivot*alpha;
|
136 |
|
|
pivot=pivot-alpha;
|
137 |
|
|
mat(k,k)=pivot;
|
138 |
|
|
for (int j=k+1;j<dim2+1;j++)
|
139 |
|
|
{
|
140 |
|
|
double somme=0.;
|
141 |
|
|
for (int i=k;i<dim1;i++)
|
142 |
|
|
somme=somme+mat(i,k)*mat(i,j);
|
143 |
|
|
double gamma=somme/beta;
|
144 |
|
|
for (int i=k;i<dim1;i++)
|
145 |
|
|
mat(i,j)=mat(i,j)-gamma*mat(i,k);
|
146 |
|
|
}
|
147 |
|
|
}
|
148 |
|
|
// resolution
|
149 |
|
|
x[dim2-1]=mat(dim2-1,dim2)/r[dim2-1];
|
150 |
|
|
for (int j=dim2-2;j>-1;j--)
|
151 |
|
|
{
|
152 |
|
|
x[j]=mat(j,dim2);
|
153 |
|
|
for (int k=dim2-1;k>j;k--)
|
154 |
|
|
x[j]=x[j]-mat(j,k)*x[k];
|
155 |
|
|
x[j]=x[j]/r[j];
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
|
160 |
|
|
#undef mat
|
161 |
|
|
delete [] mat;
|
162 |
|
|
delete [] r;
|
163 |
|
|
return 1;
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
|
170 |
|
|
|
171 |
|
|
int OT_SYSTEME::decompose_LU(double *a,double* res,int dim)
|
172 |
|
|
{
|
173 |
|
|
#define a(i,j) (*(a+(i)*(dim)+(j)))
|
174 |
|
|
#define res(i,j) (*(res+(i)*(dim)+(j)))
|
175 |
|
|
|
176 |
|
|
if (OPERATEUR::egal(a(0,0),0.,0.00001)==1) return 0;
|
177 |
|
|
for (int i=0;i<dim;i++)
|
178 |
|
|
res(i,0)=a(i,0);
|
179 |
|
|
for (int j=1;j<dim;j++)
|
180 |
|
|
res(0,j)=a(0,j)/res(0,0);
|
181 |
|
|
|
182 |
|
|
|
183 |
|
|
for (int j=1;j<dim;j++)
|
184 |
|
|
{
|
185 |
|
|
for (int i=j;i<dim;i++)
|
186 |
|
|
{
|
187 |
|
|
double sum=0.;
|
188 |
|
|
for (int k=0;k<j;k++)
|
189 |
|
|
sum=sum+res(i,k)*res(k,j);
|
190 |
|
|
res(i,j)=a(i,j)-sum;
|
191 |
|
|
}
|
192 |
|
|
for (int i=j+1;i<dim;i++)
|
193 |
|
|
{
|
194 |
|
|
double sum=0.;
|
195 |
|
|
if (OPERATEUR::egal(res(j,j),0.,0.00001)==1) return 0;
|
196 |
|
|
for (int k=0;k<j;k++)
|
197 |
|
|
sum=sum+res(j,k)*res(k,i);
|
198 |
|
|
res(j,i)=(a(j,i)-sum)/res(j,j);
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
}
|
202 |
|
|
return 1;
|
203 |
|
|
|
204 |
|
|
#undef a
|
205 |
|
|
#undef res
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
int OT_SYSTEME::resoud_LU(double *matlu,double *b,double *x,int dim)
|
210 |
|
|
{
|
211 |
|
|
#define matlu(i,j) (*(matlu+(i)*(dim)+(j)))
|
212 |
|
|
|
213 |
|
|
double* bb=new double[dim];
|
214 |
|
|
bb[0]=b[0]/matlu(0,0);
|
215 |
|
|
for (int i=1;i<dim;i++)
|
216 |
|
|
{
|
217 |
|
|
double sum=0.0;
|
218 |
|
|
for (int k=0;k<i;k++)
|
219 |
|
|
sum=sum+matlu(i,k)*bb[k];
|
220 |
|
|
bb[i]=(b[i]-sum)/matlu(i,i);
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
x[dim-1]=bb[dim-1];
|
224 |
|
|
for (int j=dim-2;j>=0;j--)
|
225 |
|
|
{
|
226 |
|
|
double sum=0.0;
|
227 |
|
|
for (int k=j+1;k<dim;k++)
|
228 |
|
|
sum=sum+matlu(j,k)*x[k];
|
229 |
|
|
x[j]=bb[j]-sum;
|
230 |
|
|
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
#undef lu
|
234 |
|
|
|
235 |
|
|
delete [] bb;
|
236 |
|
|
return 1;
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
void OT_SYSTEME::get_inv(double *mat1,double *mat2,int n,int *ierr)
|
245 |
|
|
{
|
246 |
|
|
#define mat(i,j) (*(mataug+(j)*n+i))
|
247 |
|
|
#define mat1(i,j) (*(mat1+(j)*n+i))
|
248 |
|
|
#define mat2(i,j) (*(mat2+(j)*n+i))
|
249 |
|
|
|
250 |
|
|
double *mataug=(double*)calloc(2*n*n,sizeof(double));
|
251 |
|
|
|
252 |
|
|
for (int i=0;i<n;i++)
|
253 |
|
|
{
|
254 |
|
|
for (int j=0;j<n;j++)
|
255 |
|
|
mat(i,j)=mat1(i,j);
|
256 |
|
|
mat(i,i+n)=1.;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
*ierr=0;
|
261 |
|
|
|
262 |
|
|
for (int j=0;j<n;j++)
|
263 |
|
|
{
|
264 |
|
|
//recherche du pivot max total de la colonne j
|
265 |
|
|
double pivot=fabs(mat(j,j));
|
266 |
|
|
int ligne_pivot=j;
|
267 |
|
|
for (int i=j+1;i<n;i++)
|
268 |
|
|
{
|
269 |
|
|
if (fabs(mat(i,j))>pivot)
|
270 |
|
|
{
|
271 |
|
|
pivot=fabs(mat(i,j));
|
272 |
|
|
ligne_pivot=i;
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
//tester si le pivot max est nul
|
276 |
|
|
if (pivot<0.000000001) {*ierr=1;free(mataug);return;}
|
277 |
|
|
//tester si le pivot actuel est max
|
278 |
|
|
if (ligne_pivot!=j)
|
279 |
|
|
{
|
280 |
|
|
for (int i=j;i<2*n;i++)
|
281 |
|
|
{
|
282 |
|
|
double temp=mat(j,i);
|
283 |
|
|
mat(j,i)=mat(ligne_pivot,i);
|
284 |
|
|
mat(ligne_pivot,i)=temp;
|
285 |
|
|
}
|
286 |
|
|
}
|
287 |
|
|
//remplir la colonne j de 0
|
288 |
|
|
for (int i=j+1;i<n;i++)
|
289 |
|
|
mat(i,j)=-mat(i,j)/mat(j,j);
|
290 |
|
|
for (int i=j+1;i<n;i++)
|
291 |
|
|
for (int k=j+1;k<2*n;k++)
|
292 |
|
|
mat(i,k)=mat(i,k)+mat(i,j)*mat(j,k);
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
for (int i=0;i<n;i++)
|
296 |
|
|
{
|
297 |
|
|
mat2(n-1,i)=mat(n-1,n+i)/mat(n-1,n-1);
|
298 |
|
|
for (int j=n-2;j>-1;j--)
|
299 |
|
|
{
|
300 |
|
|
mat2(j,i)=mat(j,n+i);
|
301 |
|
|
for (int k=n-1;k>j;k--)
|
302 |
|
|
mat2(j,i)=mat2(j,i)-mat2(k,i)*mat(j,k);
|
303 |
|
|
mat2(j,i)=mat2(j,i)/mat(j,j);
|
304 |
|
|
}
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
free(mataug);
|
308 |
|
|
#undef mat
|
309 |
|
|
#undef mat1
|
310 |
|
|
#undef mat2
|
311 |
|
|
}
|
312 |
|
|
|