1 |
#include "gestionversion.h" |
2 |
#include "HypergraphLib_Dijkstra.h"
|
3 |
|
4 |
#include "HypergraphLib_Graph.h"
|
5 |
#include "HypergraphLib_Node.h"
|
6 |
#include "HypergraphLib_Arc.h"
|
7 |
|
8 |
#include <stdio.h>
|
9 |
|
10 |
using namespace HypergraphLib;
|
11 |
|
12 |
//---------------------------------------------------------------------------
|
13 |
struct DJNode {
|
14 |
int nbVisit;
|
15 |
double d;
|
16 |
Node * n;
|
17 |
Node * previous;
|
18 |
Arc * prevArc;
|
19 |
};
|
20 |
|
21 |
//---------------------------------------------------------------------------
|
22 |
//Calcule le chemin le plus court entre les noeuds a et b, selon la
|
23 |
//fonction de coût distanceFunc
|
24 |
double
|
25 |
HypergraphLib::Dijkstra(Graph * __G, Node * source, Node * destination, double (* distanceFunc) (HypergraphLib::Node*, HypergraphLib::Node*, HypergraphLib::Arc*) , std::vector<Node *> & path, std::vector<Arc*> & pathArcs)
|
26 |
{
|
27 |
int i,j,k;
|
28 |
|
29 |
#define djnode(xtmp) ((DJNode*)xtmp->GetUserData(50))
|
30 |
|
31 |
|
32 |
Graph::MapNodesById graphNodes = __G->GetNodes();
|
33 |
for (Graph::MapNodesById::iterator itNode = graphNodes.begin();
|
34 |
itNode != graphNodes.end();
|
35 |
itNode ++ )
|
36 |
{
|
37 |
Node * n = itNode->second;
|
38 |
struct DJNode * dj = new struct DJNode;
|
39 |
dj->previous = NULL;
|
40 |
dj->n = n;
|
41 |
dj->nbVisit = 0;
|
42 |
dj->d = 1E300;
|
43 |
dj->prevArc = 0;
|
44 |
|
45 |
n->SetUserData(50,dj);
|
46 |
}
|
47 |
|
48 |
if (__G->GetNode(source->Id()) != source || __G->GetNode(destination->Id()) != destination )
|
49 |
return 1E300;
|
50 |
|
51 |
djnode(source)->d = 0;
|
52 |
|
53 |
typedef std::pair < double, DJNode * > DJElement;
|
54 |
std::set < DJElement > Q;
|
55 |
std::set < DJElement >::iterator itQ;
|
56 |
DJNode* djSource=djnode(source);
|
57 |
DJNode* djDestination=djnode(destination);
|
58 |
Q.insert(DJElement(djSource->d,djSource));
|
59 |
|
60 |
while ( ! Q.empty() )
|
61 |
{
|
62 |
struct DJNode * current = NULL;
|
63 |
|
64 |
DJElement top = *Q.begin();
|
65 |
Q.erase(Q.begin());
|
66 |
current = top.second;
|
67 |
|
68 |
if ( current == NULL )
|
69 |
break;
|
70 |
|
71 |
current->nbVisit++;
|
72 |
|
73 |
for ( Node::MultimapArcsById::iterator itArc1 = current->n->IncidentArcs().begin();
|
74 |
itArc1 != current->n->IncidentArcs().end();
|
75 |
itArc1 ++ )
|
76 |
{
|
77 |
Arc * arc = itArc1->second;
|
78 |
for ( Arc::MultimapNodesById::iterator itNode = arc->Nodes().begin();
|
79 |
itNode != arc->Nodes().end();
|
80 |
itNode ++ )
|
81 |
{
|
82 |
Node * child = itNode->second;
|
83 |
if (child == current->n)
|
84 |
continue;
|
85 |
|
86 |
struct DJNode * sDJNodeChild = djnode(child);
|
87 |
double dist_child = distanceFunc(child, current->n, arc);
|
88 |
|
89 |
if ( sDJNodeChild->d > current->d + dist_child)
|
90 |
{
|
91 |
if(sDJNodeChild->d < 1E100) {
|
92 |
itQ = Q.find(DJElement(sDJNodeChild->d,sDJNodeChild));
|
93 |
if (itQ != Q.end())
|
94 |
Q.erase(itQ);
|
95 |
}
|
96 |
|
97 |
sDJNodeChild->d = current->d + dist_child;
|
98 |
sDJNodeChild->previous = current->n;
|
99 |
sDJNodeChild->prevArc = arc;
|
100 |
|
101 |
Q.insert(DJElement(sDJNodeChild->d,sDJNodeChild));
|
102 |
}
|
103 |
}
|
104 |
}
|
105 |
}
|
106 |
|
107 |
struct DJNode * n = djDestination;
|
108 |
double length = n->d;
|
109 |
|
110 |
int nb_node = __G->GetNodes().size();
|
111 |
|
112 |
for (i=0; i<nb_node ; i++)
|
113 |
{
|
114 |
path.insert(path.begin(), n->n);
|
115 |
if (n->prevArc)
|
116 |
pathArcs.insert(pathArcs.begin(), n->prevArc);
|
117 |
if ( n->n == source )
|
118 |
break;
|
119 |
else
|
120 |
{
|
121 |
if (n->previous)
|
122 |
n = djnode(n->previous);
|
123 |
else
|
124 |
break;
|
125 |
}
|
126 |
}
|
127 |
if (i == nb_node)
|
128 |
length = 1E300;
|
129 |
|
130 |
for (Graph::MapNodesById::iterator itNode = graphNodes.begin();
|
131 |
itNode != graphNodes.end();
|
132 |
itNode ++ )
|
133 |
{
|
134 |
Node * node = itNode->second;
|
135 |
struct DJNode * djtmp = djnode(node);
|
136 |
delete djtmp;
|
137 |
node->SetUserData(50,0);
|
138 |
}
|
139 |
#undef djnode
|
140 |
|
141 |
return length;
|
142 |
} |
143 |
|
144 |
|