1 |
francois |
1158 |
//####//------------------------------------------------------------ |
2 |
|
|
//####//------------------------------------------------------------ |
3 |
|
|
//####// MAGiC |
4 |
|
|
//####// Jean Christophe Cuilliere et Vincent FRANCOIS |
5 |
|
|
//####// Departement de Genie Mecanique - UQTR |
6 |
|
|
//####//------------------------------------------------------------ |
7 |
|
|
//####// MAGIC est un projet de recherche de l equipe ERICCA |
8 |
|
|
//####// du departement de genie mecanique de l Universite du Quebec a Trois Rivieres |
9 |
|
|
//####// http://www.uqtr.ca/ericca |
10 |
|
|
//####// http://www.uqtr.ca/ |
11 |
|
|
//####//------------------------------------------------------------ |
12 |
|
|
//####//------------------------------------------------------------ |
13 |
|
|
//####// |
14 |
|
|
//####// fem_element2.cpp |
15 |
|
|
//####// |
16 |
|
|
//####//------------------------------------------------------------ |
17 |
|
|
//####//------------------------------------------------------------ |
18 |
|
|
//####// COPYRIGHT 2000-2024 |
19 |
|
|
//####// jeu 13 jun 2024 11:58:54 EDT |
20 |
|
|
//####//------------------------------------------------------------ |
21 |
|
|
//####//------------------------------------------------------------ |
22 |
francois |
283 |
|
23 |
|
|
|
24 |
|
|
#include "gestionversion.h" |
25 |
|
|
#include <math.h> |
26 |
francois |
309 |
#include "fem_element2.h" |
27 |
francois |
283 |
#include "fem_noeud.h" |
28 |
|
|
#include "mg_element_maillage.h" |
29 |
francois |
628 |
#include "ot_mathematique.h" |
30 |
francois |
283 |
|
31 |
francois |
309 |
FEM_ELEMENT2::FEM_ELEMENT2(unsigned long num,class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(num,mai) |
32 |
francois |
283 |
{ |
33 |
|
|
} |
34 |
francois |
378 |
FEM_ELEMENT2::FEM_ELEMENT2(unsigned long num,class MG_ELEMENT_TOPOLOGIQUE* topo):FEM_ELEMENT_MAILLAGE(num,topo) |
35 |
|
|
{ |
36 |
|
|
} |
37 |
|
|
FEM_ELEMENT2::FEM_ELEMENT2(unsigned long num,class MG_ELEMENT_TOPOLOGIQUE* topo,class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(num,topo,mai) |
38 |
|
|
{ |
39 |
|
|
} |
40 |
francois |
283 |
|
41 |
francois |
309 |
FEM_ELEMENT2::FEM_ELEMENT2(class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(mai) |
42 |
francois |
283 |
{ |
43 |
|
|
} |
44 |
francois |
378 |
FEM_ELEMENT2::FEM_ELEMENT2(class MG_ELEMENT_TOPOLOGIQUE* topo):FEM_ELEMENT_MAILLAGE(topo) |
45 |
|
|
{ |
46 |
|
|
} |
47 |
|
|
FEM_ELEMENT2::FEM_ELEMENT2(class MG_ELEMENT_TOPOLOGIQUE* topo,class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(topo,mai) |
48 |
|
|
{ |
49 |
|
|
} |
50 |
francois |
283 |
|
51 |
francois |
309 |
FEM_ELEMENT2::FEM_ELEMENT2(FEM_ELEMENT2& mdd):FEM_ELEMENT_MAILLAGE(mdd) |
52 |
francois |
283 |
{ |
53 |
|
|
} |
54 |
|
|
|
55 |
gervaislavoie |
385 |
int FEM_ELEMENT2::get_etat(void) |
56 |
|
|
{ |
57 |
|
|
return etat; |
58 |
|
|
} |
59 |
|
|
void FEM_ELEMENT2::change_etat(int num) |
60 |
|
|
{ |
61 |
|
|
etat=num; |
62 |
|
|
} |
63 |
francois |
283 |
|
64 |
francois |
309 |
FEM_ELEMENT2::~FEM_ELEMENT2() |
65 |
francois |
283 |
{ |
66 |
|
|
} |
67 |
|
|
|
68 |
|
|
|
69 |
francois |
309 |
void FEM_ELEMENT2::extrapoler_solution_noeud(void) |
70 |
francois |
283 |
{ |
71 |
|
|
int nb=get_nb_fem_noeud(); |
72 |
|
|
for (int i=0;i<nb;i++) |
73 |
francois |
377 |
for (int j=0;j<MAX_TYPE_SOLUTION;j++) |
74 |
francois |
375 |
get_fem_noeud(i)->change_solution(solution[j],j); |
75 |
francois |
283 |
} |
76 |
|
|
|
77 |
francois |
628 |
bool FEM_ELEMENT2::get_param_element_fini_2D(double *xyz,double *uv) |
78 |
|
|
{ |
79 |
|
|
OT_MATRICE_3D mat; |
80 |
|
|
OT_VECTEUR_3D vec; |
81 |
|
|
uv[0]=0.; |
82 |
|
|
uv[1]=0.; |
83 |
francois |
283 |
|
84 |
francois |
628 |
int compteur=0; |
85 |
|
|
int ok=0; |
86 |
|
|
|
87 |
|
|
while (ok==0) |
88 |
|
|
{ |
89 |
|
|
mat(0,0)=0.;mat(0,1)=0.;mat(0,2)=0.; |
90 |
|
|
mat(1,0)=0.;mat(1,1)=0.;mat(1,2)=0.; |
91 |
|
|
mat(2,0)=0.;mat(2,1)=0.;mat(2,2)=0.; |
92 |
|
|
vec(0)=xyz[0];vec(1)=xyz[1];vec(2)=xyz[2]; |
93 |
|
|
|
94 |
|
|
for (int i=0;i<get_nb_fem_noeud();i++) |
95 |
|
|
{ |
96 |
|
|
mat(0,0)=mat(0,0)+get_fonction_derive_interpolation(i+1,1,uv)*get_fem_noeud(i)->get_x(); |
97 |
|
|
mat(0,1)=mat(0,1)+get_fonction_derive_interpolation(i+1,2,uv)*get_fem_noeud(i)->get_x(); |
98 |
|
|
mat(1,0)=mat(1,0)+get_fonction_derive_interpolation(i+1,1,uv)*get_fem_noeud(i)->get_y(); |
99 |
|
|
mat(1,1)=mat(1,1)+get_fonction_derive_interpolation(i+1,2,uv)*get_fem_noeud(i)->get_y(); |
100 |
francois |
1118 |
mat(2,0)=mat(2,0)+get_fonction_derive_interpolation(i+1,1,uv)*get_fem_noeud(i)->get_z(); |
101 |
|
|
mat(2,1)=mat(2,1)+get_fonction_derive_interpolation(i+1,2,uv)*get_fem_noeud(i)->get_z(); |
102 |
francois |
628 |
vec(0)=vec(0)-get_fonction_interpolation(i+1,uv)*get_fem_noeud(i)->get_x(); |
103 |
|
|
vec(1)=vec(1)-get_fonction_interpolation(i+1,uv)*get_fem_noeud(i)->get_y(); |
104 |
francois |
1118 |
vec(2)=vec(2)-get_fonction_interpolation(i+1,uv)*get_fem_noeud(i)->get_z(); |
105 |
francois |
628 |
} |
106 |
francois |
1118 |
OT_VECTEUR_3D vtmp1(mat(0,0),mat(1,0),mat(2,0)); |
107 |
|
|
OT_VECTEUR_3D vtmp2(mat(0,1),mat(1,1),mat(2,1)); |
108 |
|
|
OT_VECTEUR_3D vtmp3=vtmp1&vtmp2; |
109 |
|
|
mat(0,2)=vtmp3.get_x(); |
110 |
|
|
mat(1,2)=vtmp3.get_y(); |
111 |
|
|
mat(2,2)=vtmp3.get_z(); |
112 |
|
|
double det=mat.get_determinant(); |
113 |
francois |
628 |
if (fabs(det)<1e-12) return false; |
114 |
francois |
1118 |
|
115 |
|
|
OT_MATRICE_3D mat1(vec,vtmp2,vtmp3); |
116 |
|
|
OT_MATRICE_3D mat2(vtmp1,vec,vtmp3); |
117 |
|
|
double d1=mat1.get_determinant()/det; |
118 |
|
|
double d2=mat2.get_determinant()/det; |
119 |
francois |
628 |
compteur++; |
120 |
|
|
if (compteur>100) return false; |
121 |
|
|
if ((fabs(d1)<1e-8)&&(fabs(d2)<1e-8)) ok=1; |
122 |
|
|
uv[0]=uv[0]+d1; |
123 |
|
|
uv[1]=uv[1]+d2; |
124 |
|
|
} |
125 |
|
|
return true; |
126 |
|
|
|
127 |
|
|
} |
128 |
|
|
|
129 |
|
|
|
130 |
|
|
void FEM_ELEMENT2::get_interpolation_xyz(double* uv, double* xyz) |
131 |
|
|
{ |
132 |
|
|
xyz[0]=0.;xyz[1]=0.;xyz[2]=0; |
133 |
|
|
for (int i=0;i<get_nb_fem_noeud();i++) |
134 |
|
|
{ |
135 |
|
|
xyz[0]=xyz[0]+get_fonction_interpolation(i+1,uv)*get_fem_noeud(i)->get_x(); |
136 |
|
|
xyz[1]=xyz[1]+get_fonction_interpolation(i+1,uv)*get_fem_noeud(i)->get_y(); |
137 |
|
|
xyz[2]=xyz[2]+get_fonction_interpolation(i+1,uv)*get_fem_noeud(i)->get_z(); |
138 |
|
|
} |
139 |
|
|
} |
140 |
|
|
|
141 |
francois |
1104 |
double FEM_ELEMENT2::get_jacobien(double* jac,double *uv,double unite) |
142 |
|
|
{ |
143 |
|
|
int nb=get_nb_fem_noeud(); |
144 |
|
|
|
145 |
|
|
OT_MATRICE_3D jacobien; |
146 |
|
|
for (int i=0;i<2;i++) |
147 |
|
|
{ |
148 |
|
|
jacobien(i,0)=0.;jacobien(i,1)=0.;jacobien(i,2)=0.; |
149 |
|
|
for (int k=0;k<nb;k++) |
150 |
|
|
{ |
151 |
|
|
double valderiv=get_fonction_derive_interpolation(k+1,i+1,uv); |
152 |
|
|
double *xyz=get_fem_noeud(k)->get_coord(); |
153 |
|
|
jacobien(i,0)=jacobien(i,0)+valderiv*xyz[0]*unite; |
154 |
|
|
jacobien(i,1)=jacobien(i,1)+valderiv*xyz[1]*unite; |
155 |
|
|
jacobien(i,2)=jacobien(i,2)+valderiv*xyz[2]*unite; |
156 |
|
|
} |
157 |
|
|
} |
158 |
|
|
OT_VECTEUR_3D j1(jacobien(0,0),jacobien(0,1),jacobien(0,2)); |
159 |
|
|
OT_VECTEUR_3D j2(jacobien(1,0),jacobien(1,1),jacobien(1,2)); |
160 |
|
|
OT_VECTEUR_3D j3=j1&j2; |
161 |
|
|
j3.norme(); |
162 |
|
|
jacobien(2,0)=j3(0); |
163 |
|
|
jacobien(2,1)=j3(1); |
164 |
|
|
jacobien(2,2)=j3(2); |
165 |
|
|
|
166 |
|
|
jac[0]=jacobien(0,0); |
167 |
|
|
jac[1]=jacobien(0,1); |
168 |
|
|
jac[2]=jacobien(0,2); |
169 |
|
|
|
170 |
|
|
jac[3]=jacobien(1,0); |
171 |
|
|
jac[4]=jacobien(1,1); |
172 |
|
|
jac[5]=jacobien(1,2); |
173 |
|
|
|
174 |
|
|
jac[6]=jacobien(2,0); |
175 |
|
|
jac[7]=jacobien(2,1); |
176 |
|
|
jac[8]=jacobien(2,2); |
177 |
|
|
|
178 |
|
|
double det=jacobien.get_determinant(); |
179 |
|
|
return det; |
180 |
|
|
} |
181 |
|
|
|
182 |
|
|
void FEM_ELEMENT2::get_inverse_jacob(double* j,double *uv,double unite) |
183 |
|
|
{ |
184 |
|
|
double jac[9]; |
185 |
|
|
get_jacobien(jac,uv,unite); |
186 |
|
|
OT_MATRICE_3D J; |
187 |
|
|
J(0,0)=jac[0]; |
188 |
|
|
J(0,1)=jac[1]; |
189 |
|
|
J(0,2)=jac[2]; |
190 |
|
|
J(1,0)=jac[3]; |
191 |
|
|
J(1,1)=jac[4]; |
192 |
|
|
J(1,2)=jac[5]; |
193 |
|
|
J(2,0)=jac[6]; |
194 |
|
|
J(2,1)=jac[7]; |
195 |
|
|
J(2,2)=jac[8]; |
196 |
|
|
OT_MATRICE_3D j_i=J.inverse(); |
197 |
|
|
|
198 |
|
|
|
199 |
|
|
j[0]=j_i(0,0); |
200 |
|
|
j[1]=j_i(0,1); |
201 |
|
|
j[2]=j_i(0,2); |
202 |
|
|
|
203 |
|
|
j[3]=j_i(1,0); |
204 |
|
|
j[4]=j_i(1,1); |
205 |
|
|
j[5]=j_i(1,2); |
206 |
|
|
|
207 |
|
|
j[6]=j_i(2,0); |
208 |
|
|
j[7]=j_i(2,1); |
209 |
|
|
j[8]=j_i(2,2); |
210 |
|
|
} |