1 |
francois |
283 |
//------------------------------------------------------------ |
2 |
|
|
//------------------------------------------------------------ |
3 |
|
|
// MAGiC |
4 |
|
|
// Jean Christophe Cuilli�re et Vincent FRANCOIS |
5 |
|
|
// D�partement de G�nie M�canique - UQTR |
6 |
|
|
//------------------------------------------------------------ |
7 |
|
|
// Le projet MAGIC est un projet de recherche du d�partement |
8 |
|
|
// de g�nie m�canique de l'Universit� du Qu�bec � |
9 |
|
|
// Trois Rivi�res |
10 |
|
|
// Les librairies ne peuvent �tre utilis�es sans l'accord |
11 |
|
|
// des auteurs (contact : francois@uqtr.ca) |
12 |
|
|
//------------------------------------------------------------ |
13 |
|
|
//------------------------------------------------------------ |
14 |
|
|
// |
15 |
|
|
// fem_segment.cpp |
16 |
|
|
// |
17 |
|
|
//------------------------------------------------------------ |
18 |
|
|
//------------------------------------------------------------ |
19 |
|
|
// COPYRIGHT 2000 |
20 |
|
|
// Version du 02/03/2006 � 11H22 |
21 |
|
|
//------------------------------------------------------------ |
22 |
|
|
//------------------------------------------------------------ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h" |
26 |
|
|
#include <math.h> |
27 |
francois |
309 |
#include "fem_element1.h" |
28 |
francois |
283 |
#include "fem_noeud.h" |
29 |
|
|
#include "mg_element_maillage.h" |
30 |
francois |
1105 |
#include "ot_mathematique.h" |
31 |
francois |
283 |
|
32 |
francois |
309 |
FEM_ELEMENT1::FEM_ELEMENT1(unsigned long num,class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(num,mai) |
33 |
francois |
283 |
{ |
34 |
|
|
} |
35 |
|
|
|
36 |
francois |
378 |
FEM_ELEMENT1::FEM_ELEMENT1(unsigned long num,class MG_ELEMENT_TOPOLOGIQUE* topo):FEM_ELEMENT_MAILLAGE(num,topo) |
37 |
|
|
{ |
38 |
|
|
} |
39 |
|
|
|
40 |
|
|
|
41 |
|
|
FEM_ELEMENT1::FEM_ELEMENT1(unsigned long num,class MG_ELEMENT_TOPOLOGIQUE* topo,class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(num,topo,mai) |
42 |
|
|
{ |
43 |
|
|
} |
44 |
|
|
|
45 |
|
|
FEM_ELEMENT1::FEM_ELEMENT1(class MG_ELEMENT_TOPOLOGIQUE* topo):FEM_ELEMENT_MAILLAGE(topo) |
46 |
|
|
{ |
47 |
|
|
} |
48 |
|
|
|
49 |
|
|
|
50 |
francois |
309 |
FEM_ELEMENT1::FEM_ELEMENT1(class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(mai) |
51 |
francois |
283 |
{ |
52 |
|
|
} |
53 |
|
|
|
54 |
francois |
378 |
FEM_ELEMENT1::FEM_ELEMENT1(class MG_ELEMENT_TOPOLOGIQUE* topo,class MG_ELEMENT_MAILLAGE* mai):FEM_ELEMENT_MAILLAGE(topo,mai) |
55 |
|
|
{ |
56 |
|
|
} |
57 |
francois |
283 |
|
58 |
francois |
309 |
FEM_ELEMENT1::FEM_ELEMENT1(FEM_ELEMENT1& mdd):FEM_ELEMENT_MAILLAGE(mdd) |
59 |
francois |
283 |
{ |
60 |
|
|
} |
61 |
|
|
|
62 |
|
|
|
63 |
|
|
|
64 |
francois |
309 |
FEM_ELEMENT1::~FEM_ELEMENT1() |
65 |
francois |
283 |
{ |
66 |
|
|
} |
67 |
|
|
|
68 |
|
|
|
69 |
francois |
309 |
void FEM_ELEMENT1::extrapoler_solution_noeud(void) |
70 |
francois |
283 |
{ |
71 |
|
|
int nb=get_nb_fem_noeud(); |
72 |
|
|
for (int i=0;i<nb;i++) |
73 |
francois |
377 |
for (int j=0;j<MAX_TYPE_SOLUTION;j++) |
74 |
francois |
375 |
get_fem_noeud(i)->change_solution(solution[j],j); |
75 |
francois |
283 |
} |
76 |
|
|
|
77 |
francois |
767 |
bool FEM_ELEMENT1::est_un_mini_element1(void) |
78 |
|
|
{ |
79 |
|
|
return false; |
80 |
|
|
} |
81 |
francois |
283 |
|
82 |
francois |
1105 |
double FEM_ELEMENT1::get_jacobien(double* jac,double *uv,double unite) |
83 |
|
|
{ |
84 |
|
|
int nb=get_nb_fem_noeud(); |
85 |
|
|
|
86 |
|
|
OT_MATRICE_3D jacobien; |
87 |
|
|
jacobien(0,0)=0.;jacobien(0,1)=0.;jacobien(0,2)=0.; |
88 |
|
|
for (int k=0;k<nb;k++) |
89 |
|
|
{ |
90 |
|
|
double valderiv=get_fonction_derive_interpolation(k+1,1,uv); |
91 |
|
|
double *xyz=get_fem_noeud(k)->get_coord(); |
92 |
|
|
jacobien(0,0)=jacobien(0,0)+valderiv*xyz[0]*unite; |
93 |
|
|
jacobien(0,1)=jacobien(0,1)+valderiv*xyz[1]*unite; |
94 |
|
|
jacobien(0,2)=jacobien(0,2)+valderiv*xyz[2]*unite; |
95 |
|
|
} |
96 |
|
|
|
97 |
|
|
OT_VECTEUR_3D vec1,vec2,vec3; |
98 |
|
|
vec1.change_x(jacobien(0,0)); |
99 |
|
|
vec1.change_y(jacobien(0,1)); |
100 |
|
|
vec1.change_z(jacobien(0,2)); |
101 |
|
|
|
102 |
|
|
if ((OPERATEUR::egal(vec1.get_x(),0.,1e-12)) && (OPERATEUR::egal(vec1.get_y(),0.,1e-12))) |
103 |
|
|
{ |
104 |
|
|
vec2.change_x(0.); |
105 |
|
|
vec2.change_y(vec1.get_z()); |
106 |
|
|
vec2.change_z(0.); |
107 |
|
|
} |
108 |
|
|
else |
109 |
|
|
{ |
110 |
|
|
vec2.change_x(vec1.get_y()); |
111 |
|
|
vec2.change_y(-vec1.get_x()); |
112 |
|
|
vec2.change_z(0.); |
113 |
|
|
} |
114 |
|
|
vec2.norme(); |
115 |
|
|
vec3=vec1&vec2; |
116 |
|
|
|
117 |
|
|
jacobien(1,0)=vec2.get_x(); |
118 |
|
|
jacobien(1,1)=vec2.get_y(); |
119 |
|
|
jacobien(1,2)=vec2.get_z(); |
120 |
|
|
jacobien(2,0)=vec3.get_x(); |
121 |
|
|
jacobien(2,1)=vec3.get_y(); |
122 |
|
|
jacobien(2,2)=vec3.get_z(); |
123 |
|
|
|
124 |
|
|
|
125 |
|
|
jac[0]=jacobien(0,0); |
126 |
|
|
jac[1]=jacobien(0,1); |
127 |
|
|
jac[2]=jacobien(0,2); |
128 |
|
|
|
129 |
|
|
jac[3]=jacobien(1,0); |
130 |
|
|
jac[4]=jacobien(1,1); |
131 |
|
|
jac[5]=jacobien(1,2); |
132 |
|
|
|
133 |
|
|
jac[6]=jacobien(2,0); |
134 |
|
|
jac[7]=jacobien(2,1); |
135 |
|
|
jac[8]=jacobien(2,2); |
136 |
|
|
|
137 |
|
|
double det=jacobien.get_determinant(); |
138 |
|
|
return det; |
139 |
|
|
} |
140 |
francois |
283 |
|
141 |
francois |
1105 |
void FEM_ELEMENT1::get_inverse_jacob(double* j,double *uv,double unite) |
142 |
|
|
{ |
143 |
|
|
double jac[9]; |
144 |
|
|
get_jacobien(jac,uv,unite); |
145 |
|
|
OT_MATRICE_3D J; |
146 |
|
|
J(0,0)=jac[0]; |
147 |
|
|
J(0,1)=jac[1]; |
148 |
|
|
J(0,2)=jac[2]; |
149 |
|
|
J(1,0)=jac[3]; |
150 |
|
|
J(1,1)=jac[4]; |
151 |
|
|
J(1,2)=jac[5]; |
152 |
|
|
J(2,0)=jac[6]; |
153 |
|
|
J(2,1)=jac[7]; |
154 |
|
|
J(2,2)=jac[8]; |
155 |
|
|
OT_MATRICE_3D j_i=J.inverse(); |
156 |
|
|
|
157 |
|
|
|
158 |
|
|
j[0]=j_i(0,0); |
159 |
|
|
j[1]=j_i(0,1); |
160 |
|
|
j[2]=j_i(0,2); |
161 |
|
|
|
162 |
|
|
j[3]=j_i(1,0); |
163 |
|
|
j[4]=j_i(1,1); |
164 |
|
|
j[5]=j_i(1,2); |
165 |
|
|
|
166 |
|
|
j[6]=j_i(2,0); |
167 |
|
|
j[7]=j_i(2,1); |
168 |
|
|
j[8]=j_i(2,2); |
169 |
|
|
} |