1 |
francois |
1158 |
//####//------------------------------------------------------------ |
2 |
|
|
//####//------------------------------------------------------------ |
3 |
|
|
//####// MAGiC |
4 |
|
|
//####// Jean Christophe Cuilliere et Vincent FRANCOIS |
5 |
|
|
//####// Departement de Genie Mecanique - UQTR |
6 |
|
|
//####//------------------------------------------------------------ |
7 |
|
|
//####// MAGIC est un projet de recherche de l equipe ERICCA |
8 |
|
|
//####// du departement de genie mecanique de l Universite du Quebec a Trois Rivieres |
9 |
|
|
//####// http://www.uqtr.ca/ericca |
10 |
|
|
//####// http://www.uqtr.ca/ |
11 |
|
|
//####//------------------------------------------------------------ |
12 |
|
|
//####//------------------------------------------------------------ |
13 |
|
|
//####// |
14 |
|
|
//####// mailleur3d_intersection.cpp |
15 |
|
|
//####// |
16 |
|
|
//####//------------------------------------------------------------ |
17 |
|
|
//####//------------------------------------------------------------ |
18 |
|
|
//####// COPYRIGHT 2000-2024 |
19 |
|
|
//####// jeu 13 jun 2024 11:58:55 EDT |
20 |
|
|
//####//------------------------------------------------------------ |
21 |
|
|
//####//------------------------------------------------------------ |
22 |
|
5 |
|
23 |
|
|
|
24 |
|
|
#include "gestionversion.h"
|
25 |
|
|
|
26 |
|
|
|
27 |
|
|
|
28 |
|
|
#include <math.h>
|
29 |
|
|
#include "mailleur3d.h"
|
30 |
|
|
#include "ot_mathematique.h"
|
31 |
francois |
553 |
#include "ot_doubleprecision.h"
|
32 |
|
5 |
|
33 |
|
|
|
34 |
|
|
|
35 |
francois |
553 |
|
36 |
|
5 |
int MAILLEUR3D::inter_tetra_triangle(MG_NOEUD* noeud1,MG_NOEUD* noeud2,MG_NOEUD* noeud3,MG_NOEUD* noeud4,MG_NOEUD* noeud5,MG_NOEUD* noeud6,MG_NOEUD* noeud7)
|
37 |
|
|
{
|
38 |
|
|
int commun1;
|
39 |
|
|
int commun2;
|
40 |
|
|
int commun3;
|
41 |
|
|
if ( (noeud5==noeud1) || (noeud5==noeud2) || (noeud5==noeud3) || (noeud5==noeud4) ) commun1=1; else commun1=0;
|
42 |
|
|
if ( (noeud6==noeud1) || (noeud6==noeud2) || (noeud6==noeud3) || (noeud6==noeud4) ) commun2=1; else commun2=0;
|
43 |
|
|
if ( (noeud7==noeud1) || (noeud7==noeud2) || (noeud7==noeud3) || (noeud7==noeud4) ) commun3=1; else commun3=0;
|
44 |
|
|
int nb_commun=commun1+commun2+commun3;
|
45 |
|
|
if (nb_commun==3) return(false);
|
46 |
|
|
int inter;
|
47 |
|
|
if (nb_commun>0) inter=true;
|
48 |
|
|
else
|
49 |
|
|
{
|
50 |
|
|
double bxmin=std::min(noeud1->get_x(),noeud2->get_x());
|
51 |
|
|
bxmin=std::min(bxmin,noeud3->get_x());
|
52 |
|
|
bxmin=std::min(bxmin,noeud4->get_x());
|
53 |
|
|
double bxmax=std::max(noeud1->get_x(),noeud2->get_x());
|
54 |
|
|
bxmax=std::max(bxmax,noeud3->get_x());
|
55 |
|
|
bxmax=std::max(bxmax,noeud4->get_x());
|
56 |
|
|
double bymin=std::min(noeud1->get_y(),noeud2->get_y());
|
57 |
|
|
bymin=std::min(bymin,noeud3->get_y());
|
58 |
|
|
bymin=std::min(bymin,noeud4->get_y());
|
59 |
|
|
double bymax=std::max(noeud1->get_y(),noeud2->get_y());
|
60 |
|
|
bymax=std::max(bymax,noeud3->get_y());
|
61 |
|
|
bymax=std::max(bymax,noeud4->get_y());
|
62 |
|
|
double bzmin=std::min(noeud1->get_z(),noeud2->get_z());
|
63 |
|
|
bzmin=std::min(bzmin,noeud3->get_z());
|
64 |
|
|
bzmin=std::min(bzmin,noeud4->get_z());
|
65 |
|
|
double bzmax=std::max(noeud1->get_z(),noeud2->get_z());
|
66 |
|
|
bzmax=std::max(bzmax,noeud3->get_z());
|
67 |
|
|
bzmax=std::max(bzmax,noeud4->get_z());
|
68 |
|
|
BOITE_3D boite_tetra(bxmin,bymin,bzmin,bxmax,bymax,bzmax);
|
69 |
|
|
double b2xmin=std::min(noeud5->get_x(),noeud6->get_x());
|
70 |
|
|
b2xmin=std::min(b2xmin,noeud7->get_x());
|
71 |
|
|
double b2xmax=std::max(noeud5->get_x(),noeud6->get_x());
|
72 |
|
|
b2xmax=std::max(b2xmax,noeud7->get_x());
|
73 |
|
|
double b2ymin=std::min(noeud5->get_y(),noeud6->get_y());
|
74 |
|
|
b2ymin=std::min(b2ymin,noeud7->get_y());
|
75 |
|
|
double b2ymax=std::max(noeud5->get_y(),noeud6->get_y());
|
76 |
|
|
b2ymax=std::max(b2ymax,noeud7->get_y());
|
77 |
|
|
double b2zmin=std::min(noeud5->get_z(),noeud6->get_z());
|
78 |
|
|
b2zmin=std::min(b2zmin,noeud7->get_z());
|
79 |
|
|
double b2zmax=std::max(noeud5->get_z(),noeud6->get_z());
|
80 |
|
|
b2zmax=std::max(b2zmax,noeud7->get_z());
|
81 |
|
|
BOITE_3D boite_triangle(b2xmin,b2ymin,b2zmin,b2xmax,b2ymax,b2zmax);
|
82 |
|
|
inter=boite_tetra*boite_triangle;
|
83 |
|
|
}
|
84 |
|
|
if (inter==true)
|
85 |
|
|
{
|
86 |
|
|
inter=false;
|
87 |
|
|
OT_VECTEUR_3D n1n2(noeud2->get_x()-noeud1->get_x(),noeud2->get_y()-noeud1->get_y(),noeud2->get_z()-noeud1->get_z());
|
88 |
|
|
OT_VECTEUR_3D n1n3(noeud3->get_x()-noeud1->get_x(),noeud3->get_y()-noeud1->get_y(),noeud3->get_z()-noeud1->get_z());
|
89 |
|
|
OT_VECTEUR_3D n1n4(noeud4->get_x()-noeud1->get_x(),noeud4->get_y()-noeud1->get_y(),noeud4->get_z()-noeud1->get_z());
|
90 |
|
|
OT_VECTEUR_3D n2n3(noeud3->get_x()-noeud2->get_x(),noeud3->get_y()-noeud2->get_y(),noeud3->get_z()-noeud2->get_z());
|
91 |
|
|
OT_VECTEUR_3D n2n4(noeud4->get_x()-noeud2->get_x(),noeud4->get_y()-noeud2->get_y(),noeud4->get_z()-noeud2->get_z());
|
92 |
|
|
OT_VECTEUR_3D n1n5(noeud5->get_x()-noeud1->get_x(),noeud5->get_y()-noeud1->get_y(),noeud5->get_z()-noeud1->get_z());
|
93 |
|
|
OT_VECTEUR_3D n1n6(noeud6->get_x()-noeud1->get_x(),noeud6->get_y()-noeud1->get_y(),noeud6->get_z()-noeud1->get_z());
|
94 |
|
|
OT_VECTEUR_3D n1n7(noeud7->get_x()-noeud1->get_x(),noeud7->get_y()-noeud1->get_y(),noeud7->get_z()-noeud1->get_z());
|
95 |
|
|
OT_VECTEUR_3D n2n5(noeud5->get_x()-noeud2->get_x(),noeud5->get_y()-noeud2->get_y(),noeud5->get_z()-noeud2->get_z());
|
96 |
|
|
OT_VECTEUR_3D n2n6(noeud6->get_x()-noeud2->get_x(),noeud6->get_y()-noeud2->get_y(),noeud6->get_z()-noeud2->get_z());
|
97 |
|
|
OT_VECTEUR_3D n2n7(noeud7->get_x()-noeud2->get_x(),noeud7->get_y()-noeud2->get_y(),noeud7->get_z()-noeud2->get_z());
|
98 |
|
|
OT_VECTEUR_3D normal1=n1n3&n1n2;
|
99 |
|
|
OT_VECTEUR_3D normal2=n1n2&n1n4;
|
100 |
|
|
OT_VECTEUR_3D normal3=n2n3&n2n4;
|
101 |
|
|
OT_VECTEUR_3D normal4=n1n4&n1n3;
|
102 |
francois |
553 |
double eps1=0.33333333333*(n1n3.diff()+n1n2.diff()+n1n5.diff());
|
103 |
|
|
double eps2=0.33333333333*(n1n4.diff()+n1n2.diff()+n1n5.diff());
|
104 |
|
|
double eps3=0.33333333333*(n2n4.diff()+n2n3.diff()+n2n5.diff());
|
105 |
|
|
double eps4=0.33333333333*(n1n4.diff()+n1n3.diff()+n1n5.diff());
|
106 |
|
|
//eps=18.*eps*eps*eps*1e-6;
|
107 |
|
|
eps1=18.*eps1*eps1*eps1*EPS_BASE_RELATIVE;
|
108 |
|
|
eps2=18.*eps2*eps2*eps2*EPS_BASE_RELATIVE;
|
109 |
|
|
eps3=18.*eps3*eps3*eps3*EPS_BASE_RELATIVE;
|
110 |
|
|
eps4=18.*eps4*eps4*eps4*EPS_BASE_RELATIVE;
|
111 |
|
5 |
if (commun1==0)
|
112 |
francois |
553 |
if (normal1*n1n5<eps1)
|
113 |
|
|
if (normal2*n1n5<eps2)
|
114 |
|
|
if (normal3*n2n5<eps3)
|
115 |
|
|
if (normal4*n1n5<eps4) return true;
|
116 |
|
|
//eps=18.*eps*eps*eps*1e-6;
|
117 |
|
|
eps1=0.33333333333*(n1n3.diff()+n1n2.diff()+n1n6.diff());
|
118 |
|
|
eps2=0.33333333333*(n1n4.diff()+n1n2.diff()+n1n6.diff());
|
119 |
|
|
eps3=0.33333333333*(n2n4.diff()+n2n3.diff()+n2n6.diff());
|
120 |
|
|
eps4=0.33333333333*(n1n4.diff()+n1n3.diff()+n1n6.diff());
|
121 |
|
|
eps1=18.*eps1*eps1*eps1*EPS_BASE_RELATIVE;
|
122 |
|
|
eps2=18.*eps2*eps2*eps2*EPS_BASE_RELATIVE;
|
123 |
|
|
eps3=18.*eps3*eps3*eps3*EPS_BASE_RELATIVE;
|
124 |
|
|
eps4=18.*eps4*eps4*eps4*EPS_BASE_RELATIVE;
|
125 |
|
5 |
if (commun2==0)
|
126 |
francois |
553 |
if (normal1*n1n6<eps1)
|
127 |
|
|
if (normal2*n1n6<eps2)
|
128 |
|
|
if (normal3*n2n6<eps3)
|
129 |
|
|
if (normal4*n1n6<eps4) return true;
|
130 |
|
|
//eps=18.*eps*eps*eps*1e-6;
|
131 |
|
|
eps1=0.33333333333*(n1n3.diff()+n1n2.diff()+n1n7.diff());
|
132 |
|
|
eps2=0.33333333333*(n1n4.diff()+n1n2.diff()+n1n7.diff());
|
133 |
|
|
eps3=0.33333333333*(n2n4.diff()+n2n3.diff()+n2n7.diff());
|
134 |
|
|
eps4=0.33333333333*(n1n4.diff()+n1n3.diff()+n1n7.diff());
|
135 |
|
|
eps1=18.*eps1*eps1*eps1*EPS_BASE_RELATIVE;
|
136 |
|
|
eps2=18.*eps2*eps2*eps2*EPS_BASE_RELATIVE;
|
137 |
|
|
eps3=18.*eps3*eps3*eps3*EPS_BASE_RELATIVE;
|
138 |
|
|
eps4=18.*eps4*eps4*eps4*EPS_BASE_RELATIVE;
|
139 |
|
5 |
if (commun3==0)
|
140 |
francois |
553 |
if (normal1*n1n7<eps1)
|
141 |
|
|
if (normal2*n1n7<eps2)
|
142 |
|
|
if (normal3*n2n7<eps3)
|
143 |
|
|
if (normal4*n1n7<eps4) return true;
|
144 |
|
5 |
if (inter_triangle_triangle(noeud1,noeud3,noeud2,noeud5,noeud6,noeud7)==true) return true;
|
145 |
|
|
if (inter_triangle_triangle(noeud1,noeud2,noeud4,noeud5,noeud6,noeud7)==true) return true;
|
146 |
|
|
if (inter_triangle_triangle(noeud2,noeud3,noeud4,noeud5,noeud6,noeud7)==true) return true;
|
147 |
|
|
if (inter_triangle_triangle(noeud1,noeud4,noeud3,noeud5,noeud6,noeud7)==true) return true;
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
return inter;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
int MAILLEUR3D::inter_triangle_triangle(MG_NOEUD* noeud1,MG_NOEUD* noeud2,MG_NOEUD* noeud3,MG_NOEUD* noeud4,MG_NOEUD* noeud5,MG_NOEUD* noeud6)
|
155 |
|
|
{
|
156 |
|
|
int nb_commun=0;
|
157 |
|
|
if ( (noeud4==noeud1) || (noeud4==noeud2) || (noeud4==noeud3) ) nb_commun++;
|
158 |
|
|
if ( (noeud5==noeud1) || (noeud5==noeud2) || (noeud5==noeud3) ) nb_commun++;
|
159 |
|
|
if ( (noeud6==noeud1) || (noeud6==noeud2) || (noeud6==noeud3) ) nb_commun++;
|
160 |
|
|
if (nb_commun==3) return(false);
|
161 |
|
|
double bxmin=std::min(noeud1->get_x(),noeud2->get_x());
|
162 |
|
|
bxmin=std::min(bxmin,noeud3->get_x());
|
163 |
|
|
double bxmax=std::max(noeud1->get_x(),noeud2->get_x());
|
164 |
|
|
bxmax=std::max(bxmax,noeud3->get_x());
|
165 |
|
|
double bymin=std::min(noeud1->get_y(),noeud2->get_y());
|
166 |
|
|
bymin=std::min(bymin,noeud3->get_y());
|
167 |
|
|
double bymax=std::max(noeud1->get_y(),noeud2->get_y());
|
168 |
|
|
bymax=std::max(bymax,noeud3->get_y());
|
169 |
|
|
double bzmin=std::min(noeud1->get_z(),noeud2->get_z());
|
170 |
|
|
bzmin=std::min(bzmin,noeud3->get_z());
|
171 |
|
|
double bzmax=std::max(noeud1->get_z(),noeud2->get_z());
|
172 |
|
|
bzmax=std::max(bzmax,noeud3->get_z());
|
173 |
|
|
BOITE_3D boite_triangle1(bxmin,bymin,bzmin,bxmax,bymax,bzmax);
|
174 |
|
|
double b2xmin=std::min(noeud5->get_x(),noeud6->get_x());
|
175 |
|
|
b2xmin=std::min(b2xmin,noeud4->get_x());
|
176 |
|
|
double b2xmax=std::max(noeud5->get_x(),noeud6->get_x());
|
177 |
|
|
b2xmax=std::max(b2xmax,noeud4->get_x());
|
178 |
|
|
double b2ymin=std::min(noeud5->get_y(),noeud6->get_y());
|
179 |
|
|
b2ymin=std::min(b2ymin,noeud4->get_y());
|
180 |
|
|
double b2ymax=std::max(noeud5->get_y(),noeud6->get_y());
|
181 |
|
|
b2ymax=std::max(b2ymax,noeud4->get_y());
|
182 |
|
|
double b2zmin=std::min(noeud5->get_z(),noeud6->get_z());
|
183 |
|
|
b2zmin=std::min(b2zmin,noeud4->get_z());
|
184 |
|
|
double b2zmax=std::max(noeud5->get_z(),noeud6->get_z());
|
185 |
|
|
b2zmax=std::max(b2zmax,noeud4->get_z());
|
186 |
|
|
BOITE_3D boite_triangle2(b2xmin,b2ymin,b2zmin,b2xmax,b2ymax,b2zmax);
|
187 |
|
|
int inter=boite_triangle1*boite_triangle2;
|
188 |
|
|
if (inter==true)
|
189 |
|
|
{
|
190 |
|
|
inter=false;
|
191 |
|
|
OT_VECTEUR_3D n1n2(noeud2->get_x()-noeud1->get_x(),noeud2->get_y()-noeud1->get_y(),noeud2->get_z()-noeud1->get_z());
|
192 |
|
|
OT_VECTEUR_3D n1n3(noeud3->get_x()-noeud1->get_x(),noeud3->get_y()-noeud1->get_y(),noeud3->get_z()-noeud1->get_z());
|
193 |
|
|
OT_VECTEUR_3D n1n4(noeud4->get_x()-noeud1->get_x(),noeud4->get_y()-noeud1->get_y(),noeud4->get_z()-noeud1->get_z());
|
194 |
|
|
OT_VECTEUR_3D n1n5(noeud5->get_x()-noeud1->get_x(),noeud5->get_y()-noeud1->get_y(),noeud5->get_z()-noeud1->get_z());
|
195 |
|
|
OT_VECTEUR_3D n1n6(noeud6->get_x()-noeud1->get_x(),noeud6->get_y()-noeud1->get_y(),noeud6->get_z()-noeud1->get_z());
|
196 |
|
|
OT_VECTEUR_3D normal=n1n2&n1n3;
|
197 |
|
|
double ps1=normal*n1n4;
|
198 |
|
|
double ps2=normal*n1n5;
|
199 |
|
|
double ps3=normal*n1n6;
|
200 |
|
|
double eps1=0.333333333*(n1n2.diff()+n1n3.diff()+n1n4.diff());
|
201 |
|
|
double eps2=0.333333333*(n1n2.diff()+n1n3.diff()+n1n5.diff());
|
202 |
|
|
double eps3=0.333333333*(n1n2.diff()+n1n3.diff()+n1n6.diff());
|
203 |
francois |
553 |
// eps1=18.*eps1*eps1*eps1*1e-6;
|
204 |
|
|
// eps2=18.*eps2*eps2*eps2*1e-6;
|
205 |
|
|
// eps3=18.*eps3*eps3*eps3*1e-6;
|
206 |
|
|
eps1=18.*eps1*eps1*eps1*EPS_BASE_RELATIVE;
|
207 |
|
|
eps2=18.*eps2*eps2*eps2*EPS_BASE_RELATIVE;
|
208 |
|
|
eps3=18.*eps3*eps3*eps3*EPS_BASE_RELATIVE;
|
209 |
|
5 |
if ((ps1<-eps1) && (ps2<-eps2) && (ps3<-eps3) ) return false;
|
210 |
|
|
if ((ps1>eps1) && (ps2>eps2) && (ps3>eps3) ) return false;
|
211 |
|
|
if (inter_segment_triangle(noeud1,noeud2,noeud3,noeud4,noeud5)==true) return true;
|
212 |
|
|
if (inter_segment_triangle(noeud1,noeud2,noeud3,noeud5,noeud6)==true) return true;
|
213 |
|
|
if (inter_segment_triangle(noeud1,noeud2,noeud3,noeud4,noeud6)==true) return true;
|
214 |
|
|
if (inter_segment_triangle(noeud4,noeud5,noeud6,noeud1,noeud2)==true) return true;
|
215 |
|
|
if (inter_segment_triangle(noeud4,noeud5,noeud6,noeud1,noeud3)==true) return true;
|
216 |
|
|
if (inter_segment_triangle(noeud4,noeud5,noeud6,noeud2,noeud3)==true) return true;
|
217 |
|
|
}
|
218 |
|
|
return inter;
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
int MAILLEUR3D::inter_segment_triangle(MG_NOEUD* noeud1,MG_NOEUD* noeud2,MG_NOEUD* noeud3,MG_NOEUD* noeud4,MG_NOEUD* noeud5)
|
224 |
|
|
{
|
225 |
|
|
int nb_commun=0;
|
226 |
|
|
if ( (noeud4==noeud1) || (noeud4==noeud2) || (noeud4==noeud3) ) nb_commun++;
|
227 |
|
|
if ( (noeud5==noeud1) || (noeud5==noeud2) || (noeud5==noeud3) ) nb_commun++;
|
228 |
|
|
if (nb_commun==2) return(false);
|
229 |
|
|
|
230 |
|
|
int inter=false;
|
231 |
|
|
OT_VECTEUR_3D g1(noeud2->get_x()-noeud1->get_x(),noeud2->get_y()-noeud1->get_y(),noeud2->get_z()-noeud1->get_z());
|
232 |
|
|
OT_VECTEUR_3D g2(noeud3->get_x()-noeud1->get_x(),noeud3->get_y()-noeud1->get_y(),noeud3->get_z()-noeud1->get_z());
|
233 |
|
|
OT_VECTEUR_3D g3(noeud5->get_x()-noeud4->get_x(),noeud5->get_y()-noeud4->get_y(),noeud5->get_z()-noeud4->get_z());
|
234 |
|
|
OT_MATRICE_3D systeme(g1,g2,g3);
|
235 |
|
|
double det=systeme.get_determinant();
|
236 |
|
|
double eps=0.333333333333*(g1.diff()+g2.diff()+g3.diff());
|
237 |
francois |
553 |
eps=18.*eps*eps*eps*EPS_BASE_RELATIVE;
|
238 |
francois |
35 |
if (OPERATEUR::egal(det,0.0,eps)==true)
|
239 |
|
5 |
{
|
240 |
francois |
35 |
OT_VECTEUR_3D g3b(noeud5->get_x()-noeud1->get_x(),noeud5->get_y()-noeud1->get_y(),noeud5->get_z()-noeud1->get_z());
|
241 |
|
|
OT_MATRICE_3D systeme2(g1,g2,g3b);
|
242 |
|
|
double det2=systeme2.get_determinant();
|
243 |
|
|
double eps2=0.333333333333*(g1.diff()+g2.diff()+g3b.diff());
|
244 |
francois |
553 |
//eps2=18.*eps2*eps2*eps2*1e-6;
|
245 |
|
|
eps2=18.*eps2*eps2*eps2*EPS_BASE_RELATIVE;
|
246 |
francois |
35 |
if (OPERATEUR::egal(det2,0.0,eps)==true) // cas 2D
|
247 |
|
|
{
|
248 |
|
|
if (inter_segment_segment(noeud1,noeud2,noeud4,noeud5)==true) return true;
|
249 |
|
|
if (inter_segment_segment(noeud1,noeud3,noeud4,noeud5)==true) return true;
|
250 |
|
|
if (inter_segment_segment(noeud2,noeud3,noeud4,noeud5)==true) return true;
|
251 |
|
|
}
|
252 |
|
|
else return false;
|
253 |
|
5 |
}
|
254 |
|
|
else
|
255 |
|
|
{
|
256 |
|
|
if ( (noeud4==noeud1) || (noeud4==noeud2) || (noeud4==noeud3) ) return false;
|
257 |
|
|
if ( (noeud5==noeud1) || (noeud5==noeud2) || (noeud5==noeud3) ) return false;
|
258 |
|
|
double x,y,z;
|
259 |
|
|
x=1.0/det*(g2.get_y()*g3.get_z()-g2.get_z()*g3.get_y());
|
260 |
|
|
y=1.0/det*(g3.get_x()*g2.get_z()-g2.get_x()*g3.get_z());
|
261 |
|
|
z=1.0/det*(g2.get_x()*g3.get_y()-g2.get_y()*g3.get_x());
|
262 |
|
|
OT_VECTEUR_3D g1b(x,y,z);
|
263 |
|
|
x=1.0/det*(g3.get_y()*g1.get_z()-g1.get_y()*g3.get_z());
|
264 |
|
|
y=1.0/det*(g1.get_x()*g3.get_z()-g3.get_x()*g1.get_z());
|
265 |
|
|
z=1.0/det*(g3.get_x()*g1.get_y()-g1.get_x()*g3.get_y());
|
266 |
|
|
OT_VECTEUR_3D g2b(x,y,z);
|
267 |
|
|
x=1.0/det*(g1.get_y()*g2.get_z()-g1.get_z()*g2.get_y());
|
268 |
|
|
y=1.0/det*(g2.get_x()*g1.get_z()-g1.get_x()*g2.get_z());
|
269 |
|
|
z=1.0/det*(g1.get_x()*g2.get_y()-g1.get_y()*g2.get_x());
|
270 |
|
|
OT_VECTEUR_3D g3b(x,y,z);
|
271 |
|
|
OT_VECTEUR_3D n1n4(noeud4->get_x()-noeud1->get_x(),noeud4->get_y()-noeud1->get_y(),noeud4->get_z()-noeud1->get_z());
|
272 |
|
|
double alpha1=n1n4*g1b;
|
273 |
|
|
double alpha2=n1n4*g2b;
|
274 |
|
|
double alpha3=-(n1n4*g3b);
|
275 |
|
|
double alpha4=1-alpha1-alpha2;
|
276 |
francois |
553 |
//double eps=0.000001;
|
277 |
|
|
double eps=0.25*(g1.diff()+g2.diff()+g3.diff()+n1n4.diff());
|
278 |
|
|
eps=EPS_BASE_RELATIVE*(eps+1./eps);
|
279 |
|
5 |
if ((alpha1>-eps) && (alpha1<1.+eps))
|
280 |
|
|
if ((alpha2>-eps) && (alpha2<1.+eps))
|
281 |
|
|
if ((alpha3>-eps) && (alpha3<1.+eps))
|
282 |
|
|
if ((alpha4>-eps) && (alpha4<1.+eps)) return true;
|
283 |
|
|
return false;
|
284 |
|
|
}
|
285 |
|
|
return inter;
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
francois |
553 |
/*int MAILLEUR3D::noeud_est_triangle(MG_NOEUD* noeud1,MG_NOEUD* noeud2,MG_NOEUD* noeud3,double x,double y,double z)
|
291 |
|
5 |
{
|
292 |
|
|
OT_VECTEUR_3D n1n2(noeud2->get_x()-noeud1->get_x(),noeud2->get_y()-noeud1->get_y(),noeud2->get_z()-noeud1->get_z());
|
293 |
|
|
OT_VECTEUR_3D n1n3(noeud3->get_x()-noeud1->get_x(),noeud3->get_y()-noeud1->get_y(),noeud3->get_z()-noeud1->get_z());
|
294 |
|
|
OT_VECTEUR_3D n=n1n2&n1n3;
|
295 |
|
|
OT_VECTEUR_3D n1p(x-noeud1->get_x(),y-noeud1->get_y(),z-noeud1->get_z());
|
296 |
|
|
OT_VECTEUR_3D n2p(x-noeud2->get_x(),y-noeud2->get_y(),z-noeud2->get_z());
|
297 |
|
|
OT_VECTEUR_3D n3p(x-noeud3->get_x(),y-noeud3->get_y(),z-noeud3->get_z());
|
298 |
|
|
OT_VECTEUR_3D pv1=n1n2&n1p;
|
299 |
|
|
double ps1=pv1*n;
|
300 |
francois |
553 |
double eps=0.25*(2.*n1n2.diff()+n1n3.diff()+n1p.diff());
|
301 |
|
|
eps=16.*eps*eps*eps*eps*EPS_BASE_RELATIVE;
|
302 |
|
5 |
if (ps1>(-eps))
|
303 |
|
|
{
|
304 |
|
|
OT_VECTEUR_3D n2n3(noeud3->get_x()-noeud2->get_x(),noeud3->get_y()-noeud2->get_y(),noeud3->get_z()-noeud2->get_z());
|
305 |
|
|
OT_VECTEUR_3D pv2=n2n3&n2p;
|
306 |
francois |
553 |
double ps2=pv2*n;
|
307 |
|
|
double eps=0.25*(n2n3.diff()+n2p.diff()+n1n2.diff()+n1n3.diff());
|
308 |
|
|
eps=16.*eps*eps*eps*eps*EPS_BASE_RELATIVE;
|
309 |
|
5 |
if (ps2>(-eps))
|
310 |
|
|
{
|
311 |
|
|
OT_VECTEUR_3D pv3=n1n3&n3p;
|
312 |
|
|
double ps3=(-1)*(pv3*n);
|
313 |
francois |
553 |
double eps=0.25*(n1n3.diff()+n3p.diff()+n1n2.diff()+n1n3.diff());
|
314 |
|
|
eps=16.*eps*eps*eps*eps*EPS_BASE_RELATIVE;
|
315 |
|
|
if (ps3>(-eps)) return true;
|
316 |
|
5 |
}
|
317 |
francois |
553 |
arete 66
|
318 |
|
5 |
|
319 |
|
|
}
|
320 |
|
|
return false;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
francois |
553 |
*/
|
324 |
|
5 |
|
325 |
|
|
|
326 |
francois |
553 |
int MAILLEUR3D::inter_segment_segment(MG_NOEUD *A, MG_NOEUD *B,MG_NOEUD *C,MG_NOEUD *D)
|
327 |
|
|
{
|
328 |
|
|
/*static int passe=0;
|
329 |
|
|
passe++;
|
330 |
|
|
if (passe==366677)
|
331 |
|
|
std::cout << " pas pareil a venir" << std::endl;
|
332 |
|
|
*/
|
333 |
|
|
int res1=inter_segment_segment1(A,B,C,D);
|
334 |
|
|
//std::cout << " pas pareil" << std::endl;
|
335 |
|
|
return res1;
|
336 |
|
|
}
|
337 |
|
5 |
|
338 |
|
|
|
339 |
francois |
553 |
int MAILLEUR3D::inter_segment_segment1(MG_NOEUD *A, MG_NOEUD *B,MG_NOEUD *C,MG_NOEUD *D)
|
340 |
|
|
{
|
341 |
|
|
double2 a0(A->get_coord()[0]);
|
342 |
|
|
double2 a1(A->get_coord()[1]);
|
343 |
|
|
double2 a2(A->get_coord()[2]);
|
344 |
|
|
OT_VECTEUR_3DD OA(a0,a1,a2);
|
345 |
|
|
double2 b0(B->get_coord()[0]);
|
346 |
|
|
double2 b1(B->get_coord()[1]);
|
347 |
|
|
double2 b2(B->get_coord()[2]);
|
348 |
|
|
OT_VECTEUR_3DD OB(b0,b1,b2);
|
349 |
|
|
double2 c0(C->get_coord()[0]);
|
350 |
|
|
double2 c1(C->get_coord()[1]);
|
351 |
|
|
double2 c2(C->get_coord()[2]);
|
352 |
|
|
OT_VECTEUR_3DD OC(c0,c1,c2);
|
353 |
|
|
double2 d0(D->get_coord()[0]);
|
354 |
|
|
double2 d1(D->get_coord()[1]);
|
355 |
|
|
double2 d2(D->get_coord()[2]);
|
356 |
|
|
OT_VECTEUR_3DD OD(d0,d1,d2);
|
357 |
|
|
OT_VECTEUR_3DD u(OA,OB);
|
358 |
|
|
OT_VECTEUR_3DD v(OC,OD);
|
359 |
|
|
OT_VECTEUR_3DD AC(OA,OC);
|
360 |
|
|
|
361 |
|
|
OT_VECTEUR_3DD uv=u&v;
|
362 |
|
|
double2 ZERO(0.);
|
363 |
|
|
double2 UN(1.);
|
364 |
|
|
double2 longueur=uv.get_longueur();
|
365 |
|
|
if (uv.get_longueur()==ZERO)
|
366 |
|
|
{
|
367 |
|
|
//std::cout << " segment colineaire" << std::endl;
|
368 |
|
|
OT_VECTEUR_3DD test=AC&u;
|
369 |
|
|
if (test.get_longueur()==ZERO)
|
370 |
|
|
{
|
371 |
|
|
//std::cout << " support segment confondu" << std::endl;
|
372 |
|
|
OT_VECTEUR_3DD AC(OA,OC);
|
373 |
|
|
OT_VECTEUR_3DD AD(OA,OD);
|
374 |
|
|
OT_VECTEUR_3DD BC(OB,OC);
|
375 |
|
|
OT_VECTEUR_3DD BD(OB,OD);
|
376 |
francois |
667 |
if (((AC*AD>ZERO) || (AC*AD==ZERO)) && ((AC*u<ZERO)||(AC*u==ZERO)) ) return 0;//std::cout << " pas intersection" << std::endl;
|
377 |
|
|
else if (((BC*BD>ZERO) || (BC*BD==ZERO)) && ((BC*u>ZERO)||(BC*u==ZERO))) return 0;//std::cout << " pas intersection" << std::endl;
|
378 |
francois |
553 |
else return 1;//std::cout << "intersection" << std::endl;
|
379 |
|
|
|
380 |
|
|
}
|
381 |
|
|
else return 0;//std::cout << " segment parrallele" << std::endl;
|
382 |
|
5 |
|
383 |
francois |
553 |
}
|
384 |
|
|
else
|
385 |
|
|
{
|
386 |
|
|
OT_VECTEUR_3DD P2=v&uv;
|
387 |
|
|
double2 a2=P2.get_x();
|
388 |
|
|
double2 b2=P2.get_y();
|
389 |
|
|
double2 c2=P2.get_z();
|
390 |
|
|
double2 d2=ZERO-a2*C->get_coord()[0]-b2*C->get_coord()[1]-c2*C->get_coord()[2];
|
391 |
|
|
double2 t1=ZERO-a2*A->get_coord()[0]-b2*A->get_coord()[1]-c2*A->get_coord()[2]-d2;
|
392 |
|
|
t1=t1/(a2*u.get_x()+b2*u.get_y()+c2*u.get_z());
|
393 |
|
|
OT_VECTEUR_3DD H=OA+t1*u;
|
394 |
|
|
|
395 |
|
|
OT_VECTEUR_3DD P1=u&uv;
|
396 |
|
|
double2 a1=P1.get_x();
|
397 |
|
|
double2 b1=P1.get_y();
|
398 |
|
|
double2 c1=P1.get_z();
|
399 |
|
|
double2 d1=ZERO-a1*A->get_coord()[0]-b1*A->get_coord()[1]-c1*A->get_coord()[2];
|
400 |
|
|
double2 t2=ZERO-a1*C->get_coord()[0]-b1*C->get_coord()[1]-c1*C->get_coord()[2]-d1;
|
401 |
|
|
t2=t2/(a1*v.get_x()+b1*v.get_y()+c1*v.get_z());
|
402 |
|
|
OT_VECTEUR_3DD H2=OC+t2*v;
|
403 |
|
|
|
404 |
|
|
OT_VECTEUR_3DD PPC2(H,H2);
|
405 |
|
|
|
406 |
|
|
if (PPC2.get_longueur()==ZERO)
|
407 |
|
|
{
|
408 |
|
|
//std::cout << " segment coplanaire" << std::endl;
|
409 |
|
|
//std::cout << " point d'intersection" << H << std::endl;
|
410 |
|
|
//std::cout << " parametre t1 " << t1 << std::endl;
|
411 |
|
|
//std::cout << " parametre t2 " << t2 << std::endl;
|
412 |
|
|
if (t1>ZERO)
|
413 |
|
|
if (t1<UN)
|
414 |
|
|
if (t2>ZERO)
|
415 |
|
|
if (t2<UN) return 1;//std::cout << " intersection " << std::endl;
|
416 |
|
|
else return 0;//std::cout << " pas intersection " << std::endl;
|
417 |
|
|
|
418 |
|
|
|
419 |
|
|
}
|
420 |
|
|
else
|
421 |
|
|
return 0;//std::cout << " segment 3D" << std::endl;
|
422 |
|
|
}
|
423 |
|
|
return 0;
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
|
427 |
|
5 |
|
428 |
|
|
#define PSCA(a,b) (a[0]*b[0]+a[1]*b[1]+a[2]*b[2])
|
429 |
francois |
507 |
#define EGAL(x,y,eps) (double)fabs((double)(x-y))<eps
|
430 |
|
5 |
#define DETER(a,b,c,d) (a*d-b*c)
|
431 |
|
|
|
432 |
francois |
553 |
|
433 |
|
|
int MAILLEUR3D::inter_segment_segment2(MG_NOEUD* noeud1,MG_NOEUD* noeud2,MG_NOEUD* noeud3,MG_NOEUD* noeud4)
|
434 |
|
5 |
{
|
435 |
|
|
|
436 |
|
|
double ab[3];
|
437 |
|
|
double nm[3];
|
438 |
|
|
double am[3];
|
439 |
|
|
ab[0]=noeud2->get_x()-noeud1->get_x();
|
440 |
|
|
ab[1]=noeud2->get_y()-noeud1->get_y();
|
441 |
|
|
ab[2]=noeud2->get_z()-noeud1->get_z();
|
442 |
|
|
nm[0]=noeud3->get_x()-noeud4->get_x();
|
443 |
|
|
nm[1]=noeud3->get_y()-noeud4->get_y();
|
444 |
|
|
nm[2]=noeud3->get_z()-noeud4->get_z();
|
445 |
|
|
am[0]=noeud3->get_x()-noeud1->get_x();
|
446 |
|
|
am[1]=noeud3->get_y()-noeud1->get_y();
|
447 |
|
|
am[2]=noeud3->get_z()-noeud1->get_z();
|
448 |
|
|
int equation[4];
|
449 |
|
|
equation[0]=1; /* etat de l'equation 0 */
|
450 |
|
|
equation[1]=1;
|
451 |
|
|
equation[2]=1;
|
452 |
|
|
equation[3]=3; /* cette variable comporte le bilan du nombre d'equation */
|
453 |
francois |
553 |
double epsab=0.3333333333333*(fabs(ab[0])+fabs(ab[1])+fabs(ab[2]))*EPS_BASE_RELATIVE;
|
454 |
|
|
double epsnm=0.3333333333333*(fabs(nm[0])+fabs(nm[1])+fabs(nm[2]))*EPS_BASE_RELATIVE;
|
455 |
|
|
double epsam=0.3333333333333*(fabs(am[0])+fabs(am[1])+fabs(am[2]))*EPS_BASE_RELATIVE;
|
456 |
|
5 |
/* recherche du nombre d'equation -> inter franche ou para ou confondu */
|
457 |
francois |
553 |
if ( (EGAL(ab[0],0,epsab)) && (EGAL(nm[0],0,epsnm)) )
|
458 |
|
|
if (EGAL(am[0],0,epsam)) equation[0]=0; else return false;
|
459 |
|
|
if ( (EGAL(ab[1],0,epsab)) && (EGAL(nm[1],0,epsnm)) )
|
460 |
|
|
if (EGAL(am[1],0,epsam)) equation[1]=0; else return false;
|
461 |
|
|
if ( (EGAL(ab[2],0,epsab)) && (EGAL(nm[2],0,epsnm)) )
|
462 |
|
|
if (EGAL(am[2],0,epsam)) equation[2]=0; else return false;
|
463 |
|
5 |
equation[3]=equation[0]+equation[1]+equation[2];
|
464 |
|
|
if (equation[3]==3)
|
465 |
|
|
{
|
466 |
|
|
double det=DETER(ab[0],nm[0],ab[1],nm[1]);
|
467 |
francois |
553 |
double eps2=0.25*(fabs(ab[0])+fabs(nm[0])+fabs(ab[1])+fabs(nm[1]));
|
468 |
|
|
eps2=4*eps2*eps2*EPS_BASE_RELATIVE;
|
469 |
|
5 |
if (fabs(det)>eps2)
|
470 |
|
|
{
|
471 |
|
|
det=1/det;
|
472 |
|
|
double sol1=det*DETER(am[0],nm[0],am[1],nm[1]);
|
473 |
|
|
double sol2=det*DETER(ab[0],am[0],ab[1],am[1]);
|
474 |
francois |
553 |
double epssol1=0.25*(fabs(am[0])+fabs(nm[0])+fabs(am[1])+fabs(nm[1]));
|
475 |
|
|
epssol1=4*epssol1*epssol1*det*EPS_BASE_RELATIVE+2*epssol1*epssol1*det*det*eps2;
|
476 |
|
|
double epssol2=0.25*(fabs(ab[0])+fabs(am[0])+fabs(ab[1])+fabs(am[1]));
|
477 |
|
|
epssol2=4*epssol2*epssol2*det*EPS_BASE_RELATIVE+2*epssol2*epssol2*det*det*eps2;
|
478 |
|
|
double eps3=0.5*(ab[2]+nm[2]);
|
479 |
|
|
eps3=(sol1+sol2)*eps3*EPS_BASE_RELATIVE+eps3*epssol1+eps3*epssol2;
|
480 |
|
|
if (fabs((double)(sol1*ab[2]-sol2*nm[2]-am[2]))>eps3) return false;
|
481 |
|
|
return(examine_solution(sol1,sol2,epssol1,epssol2,1));
|
482 |
|
5 |
}
|
483 |
|
|
else
|
484 |
|
|
{
|
485 |
|
|
equation[0]=0;
|
486 |
|
|
equation[3]=2;
|
487 |
|
|
/* on verifie la compatibilite des deux equations dont le det est nul*/
|
488 |
francois |
553 |
double tmp,eps;
|
489 |
|
|
if (!(EGAL(ab[0],0.,(0.333333333*(fabs(ab[0])+fabs(ab[1])+fabs(ab[2]))*EPS_BASE_RELATIVE))))
|
490 |
|
|
{
|
491 |
|
|
tmp=ab[1]*am[0]/ab[0];
|
492 |
|
|
eps=0.5*(fabs(ab[1])+fabs(am[0]));
|
493 |
|
|
eps=2*eps*eps/ab[0]+eps*eps/ab[0];
|
494 |
|
|
eps=eps*EPS_BASE_RELATIVE;
|
495 |
|
|
}
|
496 |
|
|
else
|
497 |
|
|
{
|
498 |
|
|
tmp=nm[1]*am[0]/nm[0];
|
499 |
|
|
eps=0.5*(fabs(nm[1])+fabs(am[0]));
|
500 |
|
|
eps=2*eps*eps/nm[0]+eps*eps/nm[0];
|
501 |
|
|
eps=eps*EPS_BASE_RELATIVE;
|
502 |
|
|
|
503 |
|
|
}
|
504 |
|
5 |
if (!(EGAL(tmp,am[1],eps))) return false;
|
505 |
|
|
}
|
506 |
|
|
}
|
507 |
|
|
if (equation[3]==2)
|
508 |
|
|
{
|
509 |
|
|
/* on repere les equations qui existent */
|
510 |
|
|
int ne1;
|
511 |
|
|
int ne2;
|
512 |
|
|
if (equation[0]!=0)
|
513 |
|
|
{
|
514 |
|
|
ne1=0;
|
515 |
|
|
if (equation[1]!=0) ne2=1; else ne2=2;
|
516 |
|
|
}
|
517 |
|
|
else
|
518 |
|
|
{
|
519 |
|
|
ne1=1;
|
520 |
|
|
ne2=2;
|
521 |
|
|
}
|
522 |
|
|
|
523 |
francois |
553 |
double det2=DETER(ab[ne1],nm[ne1],ab[ne2],nm[ne2]);
|
524 |
|
|
double eps2=0.25*(fabs(ab[ne1])+fabs(nm[ne1])+fabs(ab[ne2])+fabs(nm[ne2]));
|
525 |
|
|
eps2=4*eps2*eps2*EPS_BASE_RELATIVE;
|
526 |
|
|
if (fabs(det2)>eps2)
|
527 |
|
5 |
{
|
528 |
francois |
553 |
double det=1/det2;
|
529 |
|
5 |
double sol1=det*DETER(am[ne1],nm[ne1],am[ne2],nm[ne2]);
|
530 |
|
|
double sol2=det*DETER(ab[ne1],am[ne1],ab[ne2],am[ne2]);
|
531 |
francois |
553 |
double epssol1=0.25*(fabs(am[ne1])+fabs(nm[ne1])+fabs(am[ne2])+fabs(nm[ne2]));
|
532 |
|
|
epssol1=4*epssol1*epssol1*det*EPS_BASE_RELATIVE+2*epssol1*epssol1*det*det*eps2;
|
533 |
|
|
double epssol2=0.25*(fabs(ab[ne1])+fabs(am[ne1])+fabs(ab[ne2])+fabs(am[ne2]));
|
534 |
|
|
epssol2=4*epssol2*epssol2*det*EPS_BASE_RELATIVE+2*epssol2*epssol2*det*det*eps2;
|
535 |
|
|
return(examine_solution(sol1,sol2,epssol1,epssol2,1));
|
536 |
|
5 |
}
|
537 |
|
|
else
|
538 |
|
|
{
|
539 |
|
|
equation[ne1]=0;
|
540 |
|
|
equation[3]=1;
|
541 |
|
|
/* on verifie la compatibilite des deux equations dont le det est nul */
|
542 |
francois |
553 |
double tmp,eps;
|
543 |
|
|
if (!(EGAL(ab[ne1],0.,(0.3333333333333*(fabs(ab[0])+fabs(ab[1])+fabs(ab[2]))*EPS_BASE_RELATIVE))))
|
544 |
|
|
{
|
545 |
|
|
tmp=ab[ne2]*am[ne1]/ab[ne1];
|
546 |
|
|
eps=0.5*(fabs(ab[ne2])+fabs(am[ne1]));
|
547 |
|
|
eps=2*eps*eps/ab[ne1]+eps*eps/ab[ne1];
|
548 |
|
|
eps=eps*EPS_BASE_RELATIVE;
|
549 |
|
|
}
|
550 |
|
|
else
|
551 |
|
|
{
|
552 |
|
|
tmp=nm[ne2]*am[ne1]/nm[ne1];
|
553 |
|
|
eps=0.5*(fabs(nm[ne2])+fabs(am[ne1]));
|
554 |
|
|
eps=2*eps*eps/nm[ne1]+eps*eps/nm[ne1];
|
555 |
|
|
eps=eps*EPS_BASE_RELATIVE;
|
556 |
|
|
|
557 |
|
|
}
|
558 |
|
5 |
if (!(EGAL(tmp,am[ne2],eps))) return false;
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
}
|
562 |
|
|
if (equation[3]==1)
|
563 |
|
|
{
|
564 |
|
|
/* on repere l' equation qui existe */
|
565 |
|
|
int ne1;
|
566 |
|
|
if (equation[0]!=0) ne1=0; else
|
567 |
|
|
if (equation[1]!=0) ne1=1; else ne1=2;
|
568 |
|
|
double an[3];
|
569 |
|
|
an[0]=noeud4->get_x()-noeud1->get_x();
|
570 |
|
|
an[1]=noeud4->get_y()-noeud1->get_y();
|
571 |
|
|
an[2]=noeud4->get_z()-noeud1->get_z();
|
572 |
francois |
553 |
double tmp=1./ab[ne1];
|
573 |
|
5 |
double sol1=am[ne1]*tmp;
|
574 |
|
|
double sol2=an[ne1]*tmp;
|
575 |
francois |
553 |
double epssol1=2*am[ne1]*tmp*EPS_BASE_RELATIVE;
|
576 |
|
|
double epssol2=2*an[ne1]*tmp*EPS_BASE_RELATIVE;
|
577 |
|
|
return(examine_solution(sol1,sol2,epssol1,epssol2,2));
|
578 |
|
5 |
}
|
579 |
|
|
return 0;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
|
583 |
|
|
|
584 |
francois |
553 |
|
585 |
|
|
|
586 |
|
|
|
587 |
|
|
|
588 |
|
|
int MAILLEUR3D::examine_solution(double sol1,double sol2,double epssol1,double epssol2,int type)
|
589 |
|
5 |
{
|
590 |
francois |
553 |
epssol1=0.0001;
|
591 |
|
|
epssol2=0.0001;
|
592 |
|
5 |
|
593 |
francois |
553 |
if ((epssol1>1e-0) || (epssol2>1e-0))
|
594 |
|
|
std::cout << epssol1 << " " << epssol2 << std::endl;
|
595 |
|
5 |
if (type==1)
|
596 |
|
|
{
|
597 |
francois |
553 |
if ( (sol1>epssol1) && ((sol1)<(1-epssol1)) && (sol2>epssol2) && ((sol2)<(1-epssol2)) ) return true;
|
598 |
|
|
if ( ( (EGAL(sol1,0,epssol1)) || (EGAL(sol1,1,epssol1))) && ( (sol2>epssol2) && ((sol2)<(1-epssol2)) ) ) return true;
|
599 |
|
|
if ( ( (EGAL(sol2,0,epssol2)) || (EGAL(sol2,1,epssol2))) && ( (sol1>epssol1) && ((sol1)<(1-epssol1)) ) ) return true;
|
600 |
|
|
// if ( (sol1>epssol1) && ((sol1)<(1-epssol1)) && (sol2>-epssol2) && ((sol2)<(1.-epssol2)) ) return true;
|
601 |
|
|
// if ( (sol2>epssol2) && ((sol2)<(1-epssol2)) && (sol1>-epssol1) && ((sol1)<(1.-epssol1)) ) return true;
|
602 |
|
5 |
|
603 |
|
|
}
|
604 |
|
|
if (type==2)
|
605 |
|
|
{
|
606 |
francois |
553 |
if ( (sol1>epssol1) && ((sol1)<(1-epssol1)) ) return true;
|
607 |
|
|
if ( (sol2>epssol2) && ((sol2)<(1-epssol2)) ) return true;
|
608 |
|
|
if ( ((sol1)>(1+epssol1)) && ((-sol2)>epssol2) ) return true;
|
609 |
|
|
if ( ((sol2)>(1+epssol2)) && ((-sol1)>epssol1) ) return true;
|
610 |
|
5 |
}
|
611 |
|
|
return false;
|
612 |
francois |
553 |
/*double epsilon=0.0001;
|
613 |
|
|
|
614 |
|
|
if (type==1)
|
615 |
|
|
{
|
616 |
|
|
if ( (sol1>epsilon) && ((sol1)<(1-epsilon)) && (sol2>epsilon) && ((sol2)<(1-epsilon)) ) return 1;
|
617 |
|
|
if ( ( (EGAL(sol1,0,epsilon)) || (EGAL(sol1,1,epsilon))) && ( (sol2>epsilon) && ((sol2)<(1-epsilon)) ) ) return 1;
|
618 |
|
|
if ( ( (EGAL(sol2,0,epsilon)) || (EGAL(sol2,1,epsilon))) && ( (sol1>epsilon) && ((sol1)<(1-epsilon)) ) ) return 1;
|
619 |
|
|
if ( (sol1>epsilon) && ((sol1)<(1-epsilon)) && (sol2>(-0.1-epsilon)) && ((sol2)<(1.1-epsilon)) ) return 1;
|
620 |
|
|
if ( (sol2>epsilon) && ((sol2)<(1-epsilon)) && (sol1>(-0.1-epsilon)) && ((sol1)<(1.1-epsilon)) ) return 1;
|
621 |
|
|
|
622 |
|
|
}
|
623 |
|
|
if (type==2)
|
624 |
|
|
{
|
625 |
|
|
if ( (sol1>epsilon) && ((sol1)<(1-epsilon)) ) return 1;
|
626 |
|
|
if ( (sol2>epsilon) && ((sol2)<(1-epsilon)) ) return 1;
|
627 |
|
|
if ( ((sol1)>(1+epsilon)) && ((-sol2)>epsilon) ) return 1;
|
628 |
|
|
if ( ((sol2)>(1+epsilon)) && ((-sol1)>epsilon) ) return 1;
|
629 |
|
|
}
|
630 |
|
|
return 0;*/
|
631 |
|
5 |
}
|
632 |
|
|
#undef EGAL
|
633 |
|
|
#undef PSCA
|
634 |
|
|
#undef DETER
|
635 |
|
|
|