1 |
francois |
310 |
//------------------------------------------------------------ |
2 |
|
|
//------------------------------------------------------------ |
3 |
|
|
// MAGiC |
4 |
|
|
// Jean Christophe Cuilli�re et Vincent FRANCOIS |
5 |
|
|
// D�partement de G�nie M�canique - UQTR |
6 |
|
|
//------------------------------------------------------------ |
7 |
|
|
// Le projet MAGIC est un projet de recherche du d�partement |
8 |
|
|
// de g�nie m�canique de l'Universit� du Qu�bec � |
9 |
|
|
// Trois Rivi�res |
10 |
|
|
// Les librairies ne peuvent �tre utilis�es sans l'accord |
11 |
|
|
// des auteurs (contact : francois@uqtr.ca) |
12 |
|
|
//------------------------------------------------------------ |
13 |
|
|
//------------------------------------------------------------ |
14 |
|
|
// |
15 |
|
|
// fem_triangle3.cpp |
16 |
|
|
// |
17 |
|
|
//------------------------------------------------------------ |
18 |
|
|
//------------------------------------------------------------ |
19 |
|
|
// COPYRIGHT 2000 |
20 |
|
|
// Version du 02/03/2006 � 11H22 |
21 |
|
|
//------------------------------------------------------------ |
22 |
|
|
//------------------------------------------------------------ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h" |
26 |
|
|
#include "fem_hexa20.h" |
27 |
|
|
#include "fem_maillage.h" |
28 |
|
|
#include "fem_noeud.h" |
29 |
|
|
#include "mg_element_maillage.h" |
30 |
|
|
#include "ot_tenseur.h" |
31 |
|
|
|
32 |
|
|
|
33 |
|
|
FEM_HEXA20::FEM_HEXA20(unsigned long num,class MG_ELEMENT_MAILLAGE* mai,class FEM_NOEUD** tabnoeud):FEM_ELEMENT3(num,mai),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
34 |
|
|
{ |
35 |
|
|
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==2) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
36 |
|
|
tab[0]->get_lien_element3()->ajouter(this); |
37 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
38 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
39 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
40 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
41 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
42 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
43 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
44 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
45 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
46 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
47 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
48 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
49 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
50 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
51 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
52 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
53 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
54 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
55 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
56 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
57 |
|
|
} |
58 |
|
|
|
59 |
|
|
FEM_HEXA20::FEM_HEXA20(class MG_ELEMENT_MAILLAGE* mai,FEM_NOEUD** tabnoeud):FEM_ELEMENT3(mai),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
60 |
|
|
{ |
61 |
|
|
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==2) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
62 |
|
|
tab[0]->get_lien_element3()->ajouter(this); |
63 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
64 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
65 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
66 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
67 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
68 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
69 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
70 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
71 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
72 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
73 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
74 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
75 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
76 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
77 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
78 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
79 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
80 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
81 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
82 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
83 |
|
|
} |
84 |
|
|
|
85 |
|
|
FEM_HEXA20::FEM_HEXA20(FEM_HEXA20& mdd):FEM_ELEMENT3(mdd),FEM_TEMPLATE_ELEMENT<20>(mdd) |
86 |
|
|
{ |
87 |
|
|
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==2) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
88 |
|
|
tab[0]->get_lien_element3()->ajouter(this); |
89 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
90 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
91 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
92 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
93 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
94 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
95 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
96 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
97 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
98 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
99 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
100 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
101 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
102 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
103 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
104 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
105 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
106 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
107 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
108 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
109 |
|
|
} |
110 |
|
|
FEM_HEXA20::~FEM_HEXA20() |
111 |
|
|
{ |
112 |
|
|
if (liaison_topologique==NULL) return; |
113 |
|
|
if (liaison_topologique->get_dimension()==0) liaison_topologique->get_lien_fem_maillage()->supprimer(this); |
114 |
|
|
tab[0]->get_lien_element3()->supprimer(this); |
115 |
|
|
tab[1]->get_lien_element3()->supprimer(this); |
116 |
|
|
tab[2]->get_lien_element3()->supprimer(this); |
117 |
|
|
tab[3]->get_lien_element3()->supprimer(this); |
118 |
|
|
tab[4]->get_lien_element3()->supprimer(this); |
119 |
|
|
tab[5]->get_lien_element3()->supprimer(this); |
120 |
|
|
tab[6]->get_lien_element3()->supprimer(this); |
121 |
|
|
tab[7]->get_lien_element3()->supprimer(this); |
122 |
|
|
tab[8]->get_lien_element3()->supprimer(this); |
123 |
|
|
tab[9]->get_lien_element3()->supprimer(this); |
124 |
|
|
tab[10]->get_lien_element3()->supprimer(this); |
125 |
|
|
tab[11]->get_lien_element3()->supprimer(this); |
126 |
|
|
tab[12]->get_lien_element3()->supprimer(this); |
127 |
|
|
tab[13]->get_lien_element3()->supprimer(this); |
128 |
|
|
tab[14]->get_lien_element3()->supprimer(this); |
129 |
|
|
tab[15]->get_lien_element3()->supprimer(this); |
130 |
|
|
tab[16]->get_lien_element3()->supprimer(this); |
131 |
|
|
tab[17]->get_lien_element3()->supprimer(this); |
132 |
|
|
tab[18]->get_lien_element3()->supprimer(this); |
133 |
|
|
tab[19]->get_lien_element3()->supprimer(this); |
134 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->supprimer(this); |
135 |
|
|
} |
136 |
|
|
|
137 |
|
|
|
138 |
|
|
FEM_ELEMENT_MAILLAGE* FEM_HEXA20::dupliquer(FEM_MAILLAGE *femmai,long decalage) |
139 |
|
|
{ |
140 |
|
|
FEM_NOEUD* tabnoeud[8]; |
141 |
|
|
tabnoeud[0]=femmai->get_fem_noeudid(tab[0]->get_id()+decalage); |
142 |
|
|
tabnoeud[1]=femmai->get_fem_noeudid(tab[1]->get_id()+decalage); |
143 |
|
|
tabnoeud[2]=femmai->get_fem_noeudid(tab[2]->get_id()+decalage); |
144 |
|
|
tabnoeud[3]=femmai->get_fem_noeudid(tab[3]->get_id()+decalage); |
145 |
|
|
tabnoeud[4]=femmai->get_fem_noeudid(tab[4]->get_id()+decalage); |
146 |
|
|
tabnoeud[5]=femmai->get_fem_noeudid(tab[5]->get_id()+decalage); |
147 |
|
|
tabnoeud[6]=femmai->get_fem_noeudid(tab[6]->get_id()+decalage); |
148 |
|
|
tabnoeud[7]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
149 |
|
|
tabnoeud[8]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
150 |
|
|
tabnoeud[9]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
151 |
|
|
tabnoeud[10]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
152 |
|
|
tabnoeud[11]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
153 |
|
|
tabnoeud[12]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
154 |
|
|
tabnoeud[13]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
155 |
|
|
tabnoeud[14]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
156 |
|
|
tabnoeud[15]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
157 |
|
|
tabnoeud[16]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
158 |
|
|
tabnoeud[17]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
159 |
|
|
tabnoeud[18]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
160 |
|
|
tabnoeud[19]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
161 |
|
|
FEM_HEXA20* quad=new FEM_HEXA20(get_id()+decalage,maillage,tabnoeud); |
162 |
|
|
femmai->ajouter_fem_element3(quad); |
163 |
|
|
return quad; |
164 |
|
|
} |
165 |
|
|
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
|
170 |
|
|
int FEM_HEXA20::get_type_entite(void) |
171 |
|
|
{ |
172 |
|
|
return IDFEM_HEXA20; |
173 |
|
|
} |
174 |
|
|
|
175 |
|
|
int FEM_HEXA20::get_dimension(void) |
176 |
|
|
{ |
177 |
|
|
return 3; |
178 |
|
|
} |
179 |
|
|
|
180 |
|
|
|
181 |
|
|
|
182 |
|
|
int FEM_HEXA20::get_nb_fem_noeud(void) |
183 |
|
|
{ |
184 |
|
|
return FEM_TEMPLATE_ELEMENT<20>::get_nb_fem_noeud(); |
185 |
|
|
} |
186 |
|
|
|
187 |
|
|
FEM_NOEUD* FEM_HEXA20::get_fem_noeud(int num) |
188 |
|
|
{ |
189 |
|
|
return FEM_TEMPLATE_ELEMENT<20>::get_fem_noeud(num); |
190 |
|
|
} |
191 |
|
|
|
192 |
|
|
void FEM_HEXA20::change_noeud(int num,FEM_NOEUD* noeud) |
193 |
|
|
{ |
194 |
|
|
FEM_TEMPLATE_ELEMENT<20>::change_noeud(num,noeud); |
195 |
|
|
} |
196 |
|
|
|
197 |
|
|
BOITE_3D& FEM_HEXA20::get_boite_3D(void) |
198 |
|
|
{ |
199 |
|
|
return FEM_TEMPLATE_ELEMENT<20>::get_boite_3D(); |
200 |
|
|
} |
201 |
|
|
|
202 |
|
|
|
203 |
|
|
void FEM_HEXA20::enregistrer(std::ostream& o) |
204 |
|
|
{ |
205 |
|
|
if (get_lien_topologie()!=NULL) o << "%" << get_id() << "=FEM_HEXA20($"<< get_lien_topologie()->get_id() << ",$" << maillage->get_id() << ",$" << tab[0]->get_id() << ",$" << tab[1]->get_id() << ",$" << tab[2]->get_id()<< ",$" << tab[3]->get_id() << ",$" << tab[4]->get_id() << ",$" << tab[5]->get_id() << ",$" << tab[6]->get_id()<< ",$" << tab[7]->get_id()<< ",$" << tab[8]->get_id() << ",$" << tab[9]->get_id() << ",$" << tab[10]->get_id()<< ",$" << tab[11]->get_id() << ",$" << tab[12]->get_id() << ",$" << tab[13]->get_id() << ",$" << tab[14]->get_id() << ",$" << tab[15]->get_id() << ",$" << tab[16]->get_id()<< ",$" << tab[17]->get_id()<< ",$" << tab[18]->get_id()<< ",$" << tab[19]->get_id()<< ");" << std::endl; |
206 |
|
|
else o << "%" << get_id() << "=FEM_HEXA20(NULL,$" << maillage->get_id() << ",$" << tab[0]->get_id() << ",$" << tab[1]->get_id() << ",$" << tab[2]->get_id()<< ",$" << tab[3]->get_id() << ",$" << tab[4]->get_id() << ",$" << tab[5]->get_id() << ",$" << tab[6]->get_id()<< ",$" << tab[7]->get_id()<< ",$" << tab[8]->get_id() << ",$" << tab[9]->get_id() << ",$" << tab[10]->get_id()<< ",$" << tab[11]->get_id() << ",$" << tab[12]->get_id() << ",$" << tab[13]->get_id() << ",$" << tab[14]->get_id() << ",$" << tab[15]->get_id() << ",$" << tab[16]->get_id()<< ",$" << tab[17]->get_id()<< ",$" << tab[18]->get_id()<< ",$" << tab[19]->get_id()<<");" << std::endl; |
207 |
|
|
} |
208 |
|
|
int FEM_HEXA20::nb_fonction_interpolation(void) |
209 |
|
|
{ |
210 |
|
|
return 20; |
211 |
|
|
} |
212 |
|
|
|
213 |
|
|
|
214 |
|
|
double FEM_HEXA20::get_fonction_interpolation(int num,double *uv) |
215 |
|
|
{ |
216 |
|
|
double val; |
217 |
|
|
switch (num) |
218 |
|
|
{ |
219 |
|
|
case 1: |
220 |
|
|
{double a=-1; |
221 |
|
|
double b=-1; |
222 |
|
|
double c=-1; |
223 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
224 |
|
|
break;} |
225 |
|
|
case 3: |
226 |
|
|
{double a=1; |
227 |
|
|
double b=-1; |
228 |
|
|
double c=-1; |
229 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
230 |
|
|
break;} |
231 |
|
|
case 5: |
232 |
|
|
{double a=1; |
233 |
|
|
double b=1; |
234 |
|
|
double c=-1; |
235 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
236 |
|
|
break;} |
237 |
|
|
case 7: |
238 |
|
|
{double a=-1; |
239 |
|
|
double b=1; |
240 |
|
|
double c=-1; |
241 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
242 |
|
|
break;} |
243 |
|
|
case 13: |
244 |
|
|
{double a=-1; |
245 |
|
|
double b=-1; |
246 |
|
|
double c=1; |
247 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
248 |
|
|
break;} |
249 |
|
|
case 15: |
250 |
|
|
{double a=1; |
251 |
|
|
double b=-1; |
252 |
|
|
double c=1; |
253 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
254 |
|
|
break;} |
255 |
|
|
case 17: |
256 |
|
|
{double a=1; |
257 |
|
|
double b=1; |
258 |
|
|
double c=1; |
259 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
260 |
|
|
break;} |
261 |
|
|
case 19: |
262 |
|
|
{double a=-1; |
263 |
|
|
double b=1; |
264 |
|
|
double c=1; |
265 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
266 |
|
|
break;} |
267 |
|
|
case 2: |
268 |
|
|
{double a=0.; |
269 |
|
|
double b=-1; |
270 |
|
|
double c=-1; |
271 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
272 |
|
|
break;} |
273 |
|
|
case 6: |
274 |
|
|
{double a=0.; |
275 |
|
|
double b=1; |
276 |
|
|
double c=-1; |
277 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
278 |
|
|
break;} |
279 |
|
|
case 14: |
280 |
|
|
{double a=0.; |
281 |
|
|
double b=-1; |
282 |
|
|
double c=1; |
283 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
284 |
|
|
break;} |
285 |
|
|
case 18: |
286 |
|
|
{double a=0.; |
287 |
|
|
double b=1; |
288 |
|
|
double c=1; |
289 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
290 |
|
|
break;} |
291 |
|
|
case 4: |
292 |
|
|
{double a=1.; |
293 |
|
|
double b=0.; |
294 |
|
|
double c=-1; |
295 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
296 |
|
|
break;} |
297 |
|
|
case 8: |
298 |
|
|
{double a=-1.; |
299 |
|
|
double b=0.; |
300 |
|
|
double c=-1; |
301 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
302 |
|
|
break;} |
303 |
|
|
case 16: |
304 |
|
|
{double a=1.; |
305 |
|
|
double b=0.; |
306 |
|
|
double c=1; |
307 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
308 |
|
|
break;} |
309 |
|
|
case 20: |
310 |
|
|
{double a=-1.; |
311 |
|
|
double b=0.; |
312 |
|
|
double c=1; |
313 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
314 |
|
|
break;} |
315 |
|
|
case 9: |
316 |
|
|
{double a=-1.; |
317 |
|
|
double b=-1.; |
318 |
|
|
double c=0.; |
319 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
320 |
|
|
break;} |
321 |
|
|
case 10: |
322 |
|
|
{double a=1.; |
323 |
|
|
double b=-1.; |
324 |
|
|
double c=0.; |
325 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
326 |
|
|
break;} |
327 |
|
|
case 11: |
328 |
|
|
{double a=1.; |
329 |
|
|
double b=1.; |
330 |
|
|
double c=0.; |
331 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
332 |
|
|
break;} |
333 |
|
|
case 12: |
334 |
|
|
{double a=-1.; |
335 |
|
|
double b=1.; |
336 |
|
|
double c=0.; |
337 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
338 |
|
|
break;} |
339 |
|
|
|
340 |
|
|
|
341 |
|
|
} |
342 |
|
|
return val; |
343 |
|
|
} |
344 |
|
|
|
345 |
|
|
double FEM_HEXA20::get_fonction_derive_interpolation(int num,int num_variable,double *uv) |
346 |
|
|
{ |
347 |
|
|
double val; |
348 |
|
|
switch (num) |
349 |
|
|
{ |
350 |
|
|
case 1: |
351 |
|
|
{ |
352 |
|
|
double a=-1; |
353 |
|
|
double b=-1; |
354 |
|
|
double c=-1; |
355 |
|
|
switch (num_variable) |
356 |
|
|
{ |
357 |
|
|
case 1: |
358 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
359 |
|
|
break; |
360 |
|
|
case 2: |
361 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
362 |
|
|
break; |
363 |
|
|
case 3: |
364 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
365 |
|
|
break; |
366 |
|
|
} break;} |
367 |
|
|
case 3: |
368 |
|
|
{ |
369 |
|
|
double a=1; |
370 |
|
|
double b=-1; |
371 |
|
|
double c=-1; |
372 |
|
|
switch (num_variable) |
373 |
|
|
{ |
374 |
|
|
case 1: |
375 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
376 |
|
|
break; |
377 |
|
|
case 2: |
378 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
379 |
|
|
break; |
380 |
|
|
case 3: |
381 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
382 |
|
|
break; |
383 |
|
|
} break;} |
384 |
|
|
case 5: |
385 |
|
|
{ |
386 |
|
|
double a=1; |
387 |
|
|
double b=1; |
388 |
|
|
double c=-1; |
389 |
|
|
switch (num_variable) |
390 |
|
|
{ |
391 |
|
|
case 1: |
392 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
393 |
|
|
break; |
394 |
|
|
case 2: |
395 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
396 |
|
|
break; |
397 |
|
|
case 3: |
398 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
399 |
|
|
break; |
400 |
|
|
} break;} |
401 |
|
|
case 7: |
402 |
|
|
{ |
403 |
|
|
double a=-1; |
404 |
|
|
double b=1; |
405 |
|
|
double c=-1; |
406 |
|
|
switch (num_variable) |
407 |
|
|
{ |
408 |
|
|
case 1: |
409 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
410 |
|
|
break; |
411 |
|
|
case 2: |
412 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
413 |
|
|
break; |
414 |
|
|
case 3: |
415 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
416 |
|
|
break; |
417 |
|
|
} break;} |
418 |
|
|
case 13: |
419 |
|
|
{ |
420 |
|
|
double a=-1; |
421 |
|
|
double b=-1; |
422 |
|
|
double c=1; |
423 |
|
|
switch (num_variable) |
424 |
|
|
{ |
425 |
|
|
case 1: |
426 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
427 |
|
|
break; |
428 |
|
|
case 2: |
429 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
430 |
|
|
break; |
431 |
|
|
case 3: |
432 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
433 |
|
|
break; |
434 |
|
|
} break;} |
435 |
|
|
case 15: |
436 |
|
|
{ |
437 |
|
|
double a=1; |
438 |
|
|
double b=-1; |
439 |
|
|
double c=1; |
440 |
|
|
switch (num_variable) |
441 |
|
|
{ |
442 |
|
|
case 1: |
443 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
444 |
|
|
break; |
445 |
|
|
case 2: |
446 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
447 |
|
|
break; |
448 |
|
|
case 3: |
449 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
450 |
|
|
break; |
451 |
|
|
} break;} |
452 |
|
|
case 17: |
453 |
|
|
{ |
454 |
|
|
double a=1; |
455 |
|
|
double b=1; |
456 |
|
|
double c=1; |
457 |
|
|
switch (num_variable) |
458 |
|
|
{ |
459 |
|
|
case 1: |
460 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
461 |
|
|
break; |
462 |
|
|
case 2: |
463 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
464 |
|
|
break; |
465 |
|
|
case 3: |
466 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
467 |
|
|
break; |
468 |
|
|
} break;} |
469 |
|
|
case 19: |
470 |
|
|
{ |
471 |
|
|
double a=-1; |
472 |
|
|
double b=1; |
473 |
|
|
double c=1; |
474 |
|
|
switch (num_variable) |
475 |
|
|
{ |
476 |
|
|
case 1: |
477 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
478 |
|
|
break; |
479 |
|
|
case 2: |
480 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
481 |
|
|
break; |
482 |
|
|
case 3: |
483 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
484 |
|
|
break; |
485 |
|
|
} break;} |
486 |
|
|
case 2: |
487 |
|
|
{ |
488 |
|
|
double a=0; |
489 |
|
|
double b=-1; |
490 |
|
|
double c=-1; |
491 |
|
|
switch (num_variable) |
492 |
|
|
{ |
493 |
|
|
case 1: |
494 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
495 |
|
|
break; |
496 |
|
|
case 2: |
497 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
498 |
|
|
break; |
499 |
|
|
case 3: |
500 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
501 |
|
|
break; |
502 |
|
|
} break;} |
503 |
|
|
case 18: |
504 |
|
|
{ |
505 |
|
|
double a=0; |
506 |
|
|
double b=1; |
507 |
|
|
double c=1; |
508 |
|
|
switch (num_variable) |
509 |
|
|
{ |
510 |
|
|
case 1: |
511 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
512 |
|
|
break; |
513 |
|
|
case 2: |
514 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
515 |
|
|
break; |
516 |
|
|
case 3: |
517 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
518 |
|
|
break; |
519 |
|
|
} break;} |
520 |
|
|
case 14: |
521 |
|
|
{ |
522 |
|
|
double a=0; |
523 |
|
|
double b=-1; |
524 |
|
|
double c=1; |
525 |
|
|
switch (num_variable) |
526 |
|
|
{ |
527 |
|
|
case 1: |
528 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
529 |
|
|
break; |
530 |
|
|
case 2: |
531 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
532 |
|
|
break; |
533 |
|
|
case 3: |
534 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
535 |
|
|
break; |
536 |
|
|
} break;} |
537 |
|
|
case 6: |
538 |
|
|
{ |
539 |
|
|
double a=0; |
540 |
|
|
double b=1; |
541 |
|
|
double c=-1; |
542 |
|
|
switch (num_variable) |
543 |
|
|
{ |
544 |
|
|
case 1: |
545 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
546 |
|
|
break; |
547 |
|
|
case 2: |
548 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
549 |
|
|
break; |
550 |
|
|
case 3: |
551 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
552 |
|
|
break; |
553 |
|
|
} break;} |
554 |
|
|
case 4: |
555 |
|
|
{ |
556 |
|
|
double a=1; |
557 |
|
|
double b=0; |
558 |
|
|
double c=-1; |
559 |
|
|
switch (num_variable) |
560 |
|
|
{ |
561 |
|
|
case 1: |
562 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
563 |
|
|
break; |
564 |
|
|
case 2: |
565 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
566 |
|
|
break; |
567 |
|
|
case 3: |
568 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
569 |
|
|
break; |
570 |
|
|
} break;} |
571 |
|
|
case 8: |
572 |
|
|
{ |
573 |
|
|
double a=-1; |
574 |
|
|
double b=0; |
575 |
|
|
double c=-1; |
576 |
|
|
switch (num_variable) |
577 |
|
|
{ |
578 |
|
|
case 1: |
579 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
580 |
|
|
break; |
581 |
|
|
case 2: |
582 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
583 |
|
|
break; |
584 |
|
|
case 3: |
585 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
586 |
|
|
break; |
587 |
|
|
} break;} |
588 |
|
|
case 16: |
589 |
|
|
{ |
590 |
|
|
double a=1; |
591 |
|
|
double b=0; |
592 |
|
|
double c=1; |
593 |
|
|
switch (num_variable) |
594 |
|
|
{ |
595 |
|
|
case 1: |
596 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
597 |
|
|
break; |
598 |
|
|
case 2: |
599 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
600 |
|
|
break; |
601 |
|
|
case 3: |
602 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
603 |
|
|
break; |
604 |
|
|
} break;} |
605 |
|
|
case 20: |
606 |
|
|
{ |
607 |
|
|
double a=-1; |
608 |
|
|
double b=0; |
609 |
|
|
double c=1; |
610 |
|
|
switch (num_variable) |
611 |
|
|
{ |
612 |
|
|
case 1: |
613 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
614 |
|
|
break; |
615 |
|
|
case 2: |
616 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
617 |
|
|
break; |
618 |
|
|
case 3: |
619 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
620 |
|
|
break; |
621 |
|
|
} break;} |
622 |
|
|
case 9: |
623 |
|
|
{ |
624 |
|
|
double a=-1; |
625 |
|
|
double b=-1; |
626 |
|
|
double c=0.; |
627 |
|
|
switch (num_variable) |
628 |
|
|
{ |
629 |
|
|
case 1: |
630 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
631 |
|
|
break; |
632 |
|
|
case 2: |
633 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
634 |
|
|
break; |
635 |
|
|
case 3: |
636 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
637 |
|
|
break; |
638 |
|
|
} break;} |
639 |
|
|
case 10: |
640 |
|
|
{ |
641 |
|
|
double a=1; |
642 |
|
|
double b=-1; |
643 |
|
|
double c=0.; |
644 |
|
|
switch (num_variable) |
645 |
|
|
{ |
646 |
|
|
case 1: |
647 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
648 |
|
|
break; |
649 |
|
|
case 2: |
650 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
651 |
|
|
break; |
652 |
|
|
case 3: |
653 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
654 |
|
|
break; |
655 |
|
|
} break;} |
656 |
|
|
case 11: |
657 |
|
|
{ |
658 |
|
|
double a=1; |
659 |
|
|
double b=1; |
660 |
|
|
double c=0.; |
661 |
|
|
switch (num_variable) |
662 |
|
|
{ |
663 |
|
|
case 1: |
664 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
665 |
|
|
break; |
666 |
|
|
case 2: |
667 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
668 |
|
|
break; |
669 |
|
|
case 3: |
670 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
671 |
|
|
break; |
672 |
|
|
} break;} |
673 |
|
|
case 12: |
674 |
|
|
{ |
675 |
|
|
double a=-1; |
676 |
|
|
double b=1; |
677 |
|
|
double c=0.; |
678 |
|
|
switch (num_variable) |
679 |
|
|
{ |
680 |
|
|
case 1: |
681 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
682 |
|
|
break; |
683 |
|
|
case 2: |
684 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
685 |
|
|
break; |
686 |
|
|
case 3: |
687 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
688 |
|
|
break; |
689 |
|
|
} break;} |
690 |
|
|
|
691 |
|
|
} |
692 |
|
|
return val; |
693 |
|
|
} |
694 |
|
|
|
695 |
|
|
double FEM_HEXA20::get_jacobien(double* jac,double *uv,int& li,int& col,double unite) |
696 |
|
|
{ |
697 |
|
|
li=3;col=3; |
698 |
|
|
OT_TENSEUR Ni(3,20),Xi(20,3); |
699 |
|
|
for (int i=0;i<3;i++) |
700 |
|
|
for (int j=0;j<20;j++) |
701 |
|
|
Ni(i,j)=get_fonction_derive_interpolation(j+1,i+1,uv); |
702 |
|
|
for (int i=0;i<20;i++) |
703 |
|
|
{ |
704 |
|
|
double *xyz=tab[i]->get_coord(); |
705 |
|
|
Xi(i,0)=xyz[0]*unite; |
706 |
|
|
Xi(i,1)=xyz[1]*unite; |
707 |
|
|
Xi(i,2)=xyz[2]*unite; |
708 |
|
|
} |
709 |
|
|
OT_TENSEUR jacobi=Ni*Xi; |
710 |
|
|
jac[0]=jacobi(0,0).get_x(); |
711 |
|
|
jac[1]=jacobi(0,1).get_x(); |
712 |
|
|
jac[2]=jacobi(0,2).get_x(); |
713 |
|
|
jac[3]=jacobi(1,0).get_x(); |
714 |
|
|
jac[4]=jacobi(1,1).get_x(); |
715 |
|
|
jac[5]=jacobi(1,2).get_x(); |
716 |
|
|
jac[6]=jacobi(2,0).get_x(); |
717 |
|
|
jac[7]=jacobi(2,1).get_x(); |
718 |
|
|
jac[8]=jacobi(2,2).get_x(); |
719 |
|
|
double det=jac[0]*jac[4]*jac[8]+jac[3]*jac[7]*jac[2]+jac[6]*jac[1]*jac[5]-jac[2]*jac[4]*jac[6]-jac[5]*jac[7]*jac[0]-jac[8]*jac[1]*jac[3]; |
720 |
|
|
return det; |
721 |
|
|
|
722 |
|
|
} |
723 |
|
|
|
724 |
|
|
void FEM_HEXA20::get_inverse_jacob(double* j,double *uv,double unite) |
725 |
|
|
{ |
726 |
|
|
double jac[9]; |
727 |
|
|
int li,col; |
728 |
|
|
double detj=get_jacobien(jac,uv,li,col,unite); |
729 |
|
|
j[0*3+0] = (jac[1*3+1]*jac[2*3+2]-jac[1*3+2]*jac[2*3+1])/(detj); |
730 |
|
|
j[0*3+1] = -(jac[0*3+1]*jac[2*3+2]-jac[0*3+2]*jac[2*3+1])/(detj); |
731 |
|
|
j[0*3+2] =-(-jac[0*3+1]*jac[1*3+2]+jac[0*3+2]*jac[1*3+1])/(detj); |
732 |
|
|
|
733 |
|
|
j[1*3+0] = -(jac[1*3+0]*jac[2*3+2]-jac[1*3+2]*jac[2*3+0])/(detj); |
734 |
|
|
j[1*3+1] = (jac[0*3+0]*jac[2*3+2]-jac[0*3+2]*jac[2*3+0])/(detj); |
735 |
|
|
j[1*3+2] = -(jac[0*3+0]*jac[1*3+2]-jac[0*3+2]*jac[1*3+0])/(detj); |
736 |
|
|
|
737 |
|
|
j[2*3+0] =-(-jac[1*3+0]*jac[2*3+1]+jac[1*3+1]*jac[2*3+0])/(detj); |
738 |
|
|
j[2*3+1] = -(jac[0*3+0]*jac[2*3+1]-jac[0*3+1]*jac[2*3+0])/(detj); |
739 |
|
|
j[2*3+2] = (jac[0*3+0]*jac[1*3+1]-jac[0*3+1]*jac[1*3+0])/(detj); |
740 |
|
|
|
741 |
|
|
} |