1 |
francois |
310 |
//------------------------------------------------------------ |
2 |
|
|
//------------------------------------------------------------ |
3 |
|
|
// MAGiC |
4 |
|
|
// Jean Christophe Cuilli�re et Vincent FRANCOIS |
5 |
|
|
// D�partement de G�nie M�canique - UQTR |
6 |
|
|
//------------------------------------------------------------ |
7 |
|
|
// Le projet MAGIC est un projet de recherche du d�partement |
8 |
|
|
// de g�nie m�canique de l'Universit� du Qu�bec � |
9 |
|
|
// Trois Rivi�res |
10 |
|
|
// Les librairies ne peuvent �tre utilis�es sans l'accord |
11 |
|
|
// des auteurs (contact : francois@uqtr.ca) |
12 |
|
|
//------------------------------------------------------------ |
13 |
|
|
//------------------------------------------------------------ |
14 |
|
|
// |
15 |
|
|
// fem_triangle3.cpp |
16 |
|
|
// |
17 |
|
|
//------------------------------------------------------------ |
18 |
|
|
//------------------------------------------------------------ |
19 |
|
|
// COPYRIGHT 2000 |
20 |
|
|
// Version du 02/03/2006 � 11H22 |
21 |
|
|
//------------------------------------------------------------ |
22 |
|
|
//------------------------------------------------------------ |
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h" |
26 |
|
|
#include "fem_hexa20.h" |
27 |
|
|
#include "fem_maillage.h" |
28 |
|
|
#include "fem_noeud.h" |
29 |
|
|
#include "mg_element_maillage.h" |
30 |
|
|
#include "ot_tenseur.h" |
31 |
francois |
754 |
#include "ot_quadrature_gauss.h" |
32 |
francois |
310 |
|
33 |
|
|
|
34 |
|
|
FEM_HEXA20::FEM_HEXA20(unsigned long num,class MG_ELEMENT_MAILLAGE* mai,class FEM_NOEUD** tabnoeud):FEM_ELEMENT3(num,mai),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
35 |
|
|
{ |
36 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
37 |
francois |
310 |
tab[0]->get_lien_element3()->ajouter(this); |
38 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
39 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
40 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
41 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
42 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
43 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
44 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
45 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
46 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
47 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
48 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
49 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
50 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
51 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
52 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
53 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
54 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
55 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
56 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
57 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
58 |
|
|
} |
59 |
|
|
|
60 |
|
|
FEM_HEXA20::FEM_HEXA20(class MG_ELEMENT_MAILLAGE* mai,FEM_NOEUD** tabnoeud):FEM_ELEMENT3(mai),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
61 |
|
|
{ |
62 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
63 |
francois |
310 |
tab[0]->get_lien_element3()->ajouter(this); |
64 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
65 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
66 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
67 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
68 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
69 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
70 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
71 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
72 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
73 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
74 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
75 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
76 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
77 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
78 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
79 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
80 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
81 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
82 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
83 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
84 |
|
|
} |
85 |
|
|
|
86 |
francois |
378 |
FEM_HEXA20::FEM_HEXA20(unsigned long num,class MG_ELEMENT_TOPOLOGIQUE* topo,class FEM_NOEUD** tabnoeud):FEM_ELEMENT3(num,topo),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
87 |
|
|
{ |
88 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
89 |
francois |
378 |
tab[0]->get_lien_element3()->ajouter(this); |
90 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
91 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
92 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
93 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
94 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
95 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
96 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
97 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
98 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
99 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
100 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
101 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
102 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
103 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
104 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
105 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
106 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
107 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
108 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
109 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
110 |
|
|
} |
111 |
|
|
|
112 |
|
|
FEM_HEXA20::FEM_HEXA20(class MG_ELEMENT_TOPOLOGIQUE* topo,FEM_NOEUD** tabnoeud):FEM_ELEMENT3(topo),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
113 |
|
|
{ |
114 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
115 |
francois |
378 |
tab[0]->get_lien_element3()->ajouter(this); |
116 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
117 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
118 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
119 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
120 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
121 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
122 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
123 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
124 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
125 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
126 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
127 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
128 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
129 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
130 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
131 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
132 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
133 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
134 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
135 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
FEM_HEXA20::FEM_HEXA20(unsigned long num,class MG_ELEMENT_TOPOLOGIQUE* topo,class MG_ELEMENT_MAILLAGE* mai,class FEM_NOEUD** tabnoeud):FEM_ELEMENT3(num,topo,mai),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
139 |
|
|
{ |
140 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
141 |
francois |
378 |
tab[0]->get_lien_element3()->ajouter(this); |
142 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
143 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
144 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
145 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
146 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
147 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
148 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
149 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
150 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
151 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
152 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
153 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
154 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
155 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
156 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
157 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
158 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
159 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
160 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
161 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
162 |
|
|
} |
163 |
|
|
|
164 |
|
|
FEM_HEXA20::FEM_HEXA20(class MG_ELEMENT_TOPOLOGIQUE* topo,class MG_ELEMENT_MAILLAGE* mai,FEM_NOEUD** tabnoeud):FEM_ELEMENT3(topo,mai),FEM_TEMPLATE_ELEMENT<20>(tabnoeud) |
165 |
|
|
{ |
166 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
167 |
francois |
378 |
tab[0]->get_lien_element3()->ajouter(this); |
168 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
169 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
170 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
171 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
172 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
173 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
174 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
175 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
176 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
177 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
178 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
179 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
180 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
181 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
182 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
183 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
184 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
185 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
186 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
187 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
188 |
|
|
} |
189 |
|
|
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
|
194 |
|
|
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
|
198 |
francois |
310 |
FEM_HEXA20::FEM_HEXA20(FEM_HEXA20& mdd):FEM_ELEMENT3(mdd),FEM_TEMPLATE_ELEMENT<20>(mdd) |
199 |
|
|
{ |
200 |
francois |
581 |
if (liaison_topologique!=NULL) if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->ajouter(this); |
201 |
francois |
310 |
tab[0]->get_lien_element3()->ajouter(this); |
202 |
|
|
tab[1]->get_lien_element3()->ajouter(this); |
203 |
|
|
tab[2]->get_lien_element3()->ajouter(this); |
204 |
|
|
tab[3]->get_lien_element3()->ajouter(this); |
205 |
|
|
tab[4]->get_lien_element3()->ajouter(this); |
206 |
|
|
tab[5]->get_lien_element3()->ajouter(this); |
207 |
|
|
tab[6]->get_lien_element3()->ajouter(this); |
208 |
|
|
tab[7]->get_lien_element3()->ajouter(this); |
209 |
|
|
tab[8]->get_lien_element3()->ajouter(this); |
210 |
|
|
tab[9]->get_lien_element3()->ajouter(this); |
211 |
|
|
tab[10]->get_lien_element3()->ajouter(this); |
212 |
|
|
tab[11]->get_lien_element3()->ajouter(this); |
213 |
|
|
tab[12]->get_lien_element3()->ajouter(this); |
214 |
|
|
tab[13]->get_lien_element3()->ajouter(this); |
215 |
|
|
tab[14]->get_lien_element3()->ajouter(this); |
216 |
|
|
tab[15]->get_lien_element3()->ajouter(this); |
217 |
|
|
tab[16]->get_lien_element3()->ajouter(this); |
218 |
|
|
tab[17]->get_lien_element3()->ajouter(this); |
219 |
|
|
tab[18]->get_lien_element3()->ajouter(this); |
220 |
|
|
tab[19]->get_lien_element3()->ajouter(this); |
221 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->ajouter(this); |
222 |
|
|
} |
223 |
|
|
FEM_HEXA20::~FEM_HEXA20() |
224 |
|
|
{ |
225 |
francois |
663 |
if (liaison_topologique!=NULL) |
226 |
|
|
if (liaison_topologique->get_dimension()==3) liaison_topologique->get_lien_fem_maillage()->supprimer(this); |
227 |
francois |
310 |
tab[0]->get_lien_element3()->supprimer(this); |
228 |
|
|
tab[1]->get_lien_element3()->supprimer(this); |
229 |
|
|
tab[2]->get_lien_element3()->supprimer(this); |
230 |
|
|
tab[3]->get_lien_element3()->supprimer(this); |
231 |
|
|
tab[4]->get_lien_element3()->supprimer(this); |
232 |
|
|
tab[5]->get_lien_element3()->supprimer(this); |
233 |
|
|
tab[6]->get_lien_element3()->supprimer(this); |
234 |
|
|
tab[7]->get_lien_element3()->supprimer(this); |
235 |
|
|
tab[8]->get_lien_element3()->supprimer(this); |
236 |
|
|
tab[9]->get_lien_element3()->supprimer(this); |
237 |
|
|
tab[10]->get_lien_element3()->supprimer(this); |
238 |
|
|
tab[11]->get_lien_element3()->supprimer(this); |
239 |
|
|
tab[12]->get_lien_element3()->supprimer(this); |
240 |
|
|
tab[13]->get_lien_element3()->supprimer(this); |
241 |
|
|
tab[14]->get_lien_element3()->supprimer(this); |
242 |
|
|
tab[15]->get_lien_element3()->supprimer(this); |
243 |
|
|
tab[16]->get_lien_element3()->supprimer(this); |
244 |
|
|
tab[17]->get_lien_element3()->supprimer(this); |
245 |
|
|
tab[18]->get_lien_element3()->supprimer(this); |
246 |
|
|
tab[19]->get_lien_element3()->supprimer(this); |
247 |
|
|
get_fem_noeudpetitid()->get_lien_petit_element3()->supprimer(this); |
248 |
|
|
} |
249 |
|
|
|
250 |
|
|
|
251 |
|
|
FEM_ELEMENT_MAILLAGE* FEM_HEXA20::dupliquer(FEM_MAILLAGE *femmai,long decalage) |
252 |
|
|
{ |
253 |
couturad |
944 |
FEM_NOEUD* tabnoeud[20]; |
254 |
francois |
310 |
tabnoeud[0]=femmai->get_fem_noeudid(tab[0]->get_id()+decalage); |
255 |
|
|
tabnoeud[1]=femmai->get_fem_noeudid(tab[1]->get_id()+decalage); |
256 |
|
|
tabnoeud[2]=femmai->get_fem_noeudid(tab[2]->get_id()+decalage); |
257 |
|
|
tabnoeud[3]=femmai->get_fem_noeudid(tab[3]->get_id()+decalage); |
258 |
|
|
tabnoeud[4]=femmai->get_fem_noeudid(tab[4]->get_id()+decalage); |
259 |
|
|
tabnoeud[5]=femmai->get_fem_noeudid(tab[5]->get_id()+decalage); |
260 |
|
|
tabnoeud[6]=femmai->get_fem_noeudid(tab[6]->get_id()+decalage); |
261 |
|
|
tabnoeud[7]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
262 |
|
|
tabnoeud[8]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
263 |
|
|
tabnoeud[9]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
264 |
|
|
tabnoeud[10]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
265 |
|
|
tabnoeud[11]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
266 |
|
|
tabnoeud[12]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
267 |
|
|
tabnoeud[13]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
268 |
|
|
tabnoeud[14]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
269 |
|
|
tabnoeud[15]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
270 |
|
|
tabnoeud[16]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
271 |
|
|
tabnoeud[17]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
272 |
|
|
tabnoeud[18]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
273 |
|
|
tabnoeud[19]=femmai->get_fem_noeudid(tab[7]->get_id()+decalage); |
274 |
|
|
FEM_HEXA20* quad=new FEM_HEXA20(get_id()+decalage,maillage,tabnoeud); |
275 |
|
|
femmai->ajouter_fem_element3(quad); |
276 |
|
|
return quad; |
277 |
|
|
} |
278 |
|
|
|
279 |
|
|
|
280 |
francois |
786 |
void FEM_HEXA20::get_voisin_noeud(class FEM_NOEUD* no,TPL_LISTE_ENTITE<FEM_NOEUD*> &voisin) |
281 |
|
|
{ |
282 |
|
|
voisin.vide(); |
283 |
|
|
if (no==tab[0]) |
284 |
|
|
{ |
285 |
|
|
voisin.ajouter(tab[1]); |
286 |
|
|
voisin.ajouter(tab[7]); |
287 |
|
|
voisin.ajouter(tab[8]); |
288 |
|
|
} |
289 |
|
|
if (no==tab[1]) |
290 |
|
|
{ |
291 |
|
|
voisin.ajouter(tab[0]); |
292 |
|
|
voisin.ajouter(tab[2]); |
293 |
|
|
} |
294 |
|
|
if (no==tab[2]) |
295 |
|
|
{ |
296 |
|
|
voisin.ajouter(tab[1]); |
297 |
|
|
voisin.ajouter(tab[3]); |
298 |
|
|
voisin.ajouter(tab[9]); |
299 |
|
|
} |
300 |
|
|
if (no==tab[3]) |
301 |
|
|
{ |
302 |
|
|
voisin.ajouter(tab[2]); |
303 |
|
|
voisin.ajouter(tab[4]); |
304 |
|
|
} |
305 |
|
|
if (no==tab[4]) |
306 |
|
|
{ |
307 |
|
|
voisin.ajouter(tab[3]); |
308 |
|
|
voisin.ajouter(tab[5]); |
309 |
|
|
voisin.ajouter(tab[10]); |
310 |
|
|
} |
311 |
|
|
if (no==tab[5]) |
312 |
|
|
{ |
313 |
|
|
voisin.ajouter(tab[4]); |
314 |
|
|
voisin.ajouter(tab[6]); |
315 |
|
|
} |
316 |
|
|
if (no==tab[6]) |
317 |
|
|
{ |
318 |
|
|
voisin.ajouter(tab[5]); |
319 |
|
|
voisin.ajouter(tab[7]); |
320 |
|
|
voisin.ajouter(tab[11]); |
321 |
|
|
} |
322 |
|
|
if (no==tab[7]) |
323 |
|
|
{ |
324 |
|
|
voisin.ajouter(tab[0]); |
325 |
|
|
voisin.ajouter(tab[6]); |
326 |
|
|
} |
327 |
|
|
if (no==tab[8]) |
328 |
|
|
{ |
329 |
|
|
voisin.ajouter(tab[0]); |
330 |
|
|
voisin.ajouter(tab[12]); |
331 |
|
|
} |
332 |
|
|
if (no==tab[9]) |
333 |
|
|
{ |
334 |
|
|
voisin.ajouter(tab[2]); |
335 |
|
|
voisin.ajouter(tab[14]); |
336 |
|
|
} |
337 |
|
|
if (no==tab[10]) |
338 |
|
|
{ |
339 |
|
|
voisin.ajouter(tab[4]); |
340 |
|
|
voisin.ajouter(tab[16]); |
341 |
|
|
} |
342 |
|
|
if (no==tab[11]) |
343 |
|
|
{ |
344 |
|
|
voisin.ajouter(tab[6]); |
345 |
|
|
voisin.ajouter(tab[18]); |
346 |
|
|
} |
347 |
francois |
310 |
|
348 |
francois |
786 |
if (no==tab[12]) |
349 |
|
|
{ |
350 |
|
|
voisin.ajouter(tab[8]); |
351 |
|
|
voisin.ajouter(tab[13]); |
352 |
|
|
voisin.ajouter(tab[19]); |
353 |
|
|
} |
354 |
|
|
if (no==tab[13]) |
355 |
|
|
{ |
356 |
|
|
voisin.ajouter(tab[12]); |
357 |
|
|
voisin.ajouter(tab[14]); |
358 |
|
|
} |
359 |
|
|
if (no==tab[14]) |
360 |
|
|
{ |
361 |
|
|
voisin.ajouter(tab[9]); |
362 |
|
|
voisin.ajouter(tab[13]); |
363 |
|
|
voisin.ajouter(tab[15]); |
364 |
|
|
} |
365 |
|
|
if (no==tab[15]) |
366 |
|
|
{ |
367 |
|
|
voisin.ajouter(tab[14]); |
368 |
|
|
voisin.ajouter(tab[16]); |
369 |
|
|
} |
370 |
|
|
if (no==tab[16]) |
371 |
|
|
{ |
372 |
|
|
voisin.ajouter(tab[10]); |
373 |
|
|
voisin.ajouter(tab[15]); |
374 |
|
|
voisin.ajouter(tab[17]); |
375 |
|
|
} |
376 |
|
|
if (no==tab[17]) |
377 |
|
|
{ |
378 |
|
|
voisin.ajouter(tab[16]); |
379 |
|
|
voisin.ajouter(tab[18]); |
380 |
|
|
} |
381 |
|
|
if (no==tab[18]) |
382 |
|
|
{ |
383 |
|
|
voisin.ajouter(tab[11]); |
384 |
|
|
voisin.ajouter(tab[17]); |
385 |
|
|
voisin.ajouter(tab[19]); |
386 |
|
|
} |
387 |
|
|
if (no==tab[19]) |
388 |
|
|
{ |
389 |
|
|
voisin.ajouter(tab[18]); |
390 |
|
|
voisin.ajouter(tab[12]); |
391 |
|
|
} |
392 |
|
|
} |
393 |
francois |
310 |
|
394 |
|
|
|
395 |
|
|
int FEM_HEXA20::get_type_entite(void) |
396 |
|
|
{ |
397 |
|
|
return IDFEM_HEXA20; |
398 |
|
|
} |
399 |
|
|
|
400 |
|
|
int FEM_HEXA20::get_dimension(void) |
401 |
|
|
{ |
402 |
|
|
return 3; |
403 |
|
|
} |
404 |
|
|
|
405 |
|
|
|
406 |
|
|
|
407 |
|
|
int FEM_HEXA20::get_nb_fem_noeud(void) |
408 |
|
|
{ |
409 |
|
|
return FEM_TEMPLATE_ELEMENT<20>::get_nb_fem_noeud(); |
410 |
|
|
} |
411 |
|
|
|
412 |
|
|
FEM_NOEUD* FEM_HEXA20::get_fem_noeud(int num) |
413 |
|
|
{ |
414 |
|
|
return FEM_TEMPLATE_ELEMENT<20>::get_fem_noeud(num); |
415 |
|
|
} |
416 |
|
|
|
417 |
|
|
void FEM_HEXA20::change_noeud(int num,FEM_NOEUD* noeud) |
418 |
|
|
{ |
419 |
|
|
FEM_TEMPLATE_ELEMENT<20>::change_noeud(num,noeud); |
420 |
|
|
} |
421 |
|
|
|
422 |
|
|
BOITE_3D& FEM_HEXA20::get_boite_3D(void) |
423 |
|
|
{ |
424 |
|
|
return FEM_TEMPLATE_ELEMENT<20>::get_boite_3D(); |
425 |
|
|
} |
426 |
|
|
|
427 |
|
|
|
428 |
francois |
763 |
void FEM_HEXA20::enregistrer(std::ostream& o,double version) |
429 |
francois |
310 |
{ |
430 |
francois |
378 |
if (maillage!=NULL) |
431 |
|
|
if (get_lien_topologie()!=NULL) o << "%" << get_id() << "=FEM_HEXA20($"<< get_lien_topologie()->get_id() << ",$" << maillage->get_id() << ",$" << tab[0]->get_id() << ",$" << tab[1]->get_id() << ",$" << tab[2]->get_id()<< ",$" << tab[3]->get_id() << ",$" << tab[4]->get_id() << ",$" << tab[5]->get_id() << ",$" << tab[6]->get_id()<< ",$" << tab[7]->get_id()<< ",$" << tab[8]->get_id() << ",$" << tab[9]->get_id() << ",$" << tab[10]->get_id()<< ",$" << tab[11]->get_id() << ",$" << tab[12]->get_id() << ",$" << tab[13]->get_id() << ",$" << tab[14]->get_id() << ",$" << tab[15]->get_id() << ",$" << tab[16]->get_id()<< ",$" << tab[17]->get_id()<< ",$" << tab[18]->get_id()<< ",$" << tab[19]->get_id()<< ");" << std::endl; |
432 |
|
|
else o << "%" << get_id() << "=FEM_HEXA20(NULL,$" << maillage->get_id() << ",$" << tab[0]->get_id() << ",$" << tab[1]->get_id() << ",$" << tab[2]->get_id()<< ",$" << tab[3]->get_id() << ",$" << tab[4]->get_id() << ",$" << tab[5]->get_id() << ",$" << tab[6]->get_id()<< ",$" << tab[7]->get_id()<< ",$" << tab[8]->get_id() << ",$" << tab[9]->get_id() << ",$" << tab[10]->get_id()<< ",$" << tab[11]->get_id() << ",$" << tab[12]->get_id() << ",$" << tab[13]->get_id() << ",$" << tab[14]->get_id() << ",$" << tab[15]->get_id() << ",$" << tab[16]->get_id()<< ",$" << tab[17]->get_id()<< ",$" << tab[18]->get_id()<< ",$" << tab[19]->get_id()<<");" << std::endl; |
433 |
|
|
else |
434 |
|
|
if (get_lien_topologie()!=NULL) o << "%" << get_id() << "=FEM_HEXA20($"<< get_lien_topologie()->get_id() << ",NULL,$" << tab[0]->get_id() << ",$" << tab[1]->get_id() << ",$" << tab[2]->get_id()<< ",$" << tab[3]->get_id() << ",$" << tab[4]->get_id() << ",$" << tab[5]->get_id() << ",$" << tab[6]->get_id()<< ",$" << tab[7]->get_id()<< ",$" << tab[8]->get_id() << ",$" << tab[9]->get_id() << ",$" << tab[10]->get_id()<< ",$" << tab[11]->get_id() << ",$" << tab[12]->get_id() << ",$" << tab[13]->get_id() << ",$" << tab[14]->get_id() << ",$" << tab[15]->get_id() << ",$" << tab[16]->get_id()<< ",$" << tab[17]->get_id()<< ",$" << tab[18]->get_id()<< ",$" << tab[19]->get_id()<< ");" << std::endl; |
435 |
|
|
else o << "%" << get_id() << "=FEM_HEXA20(NULL,NULL,$" << tab[0]->get_id() << ",$" << tab[1]->get_id() << ",$" << tab[2]->get_id()<< ",$" << tab[3]->get_id() << ",$" << tab[4]->get_id() << ",$" << tab[5]->get_id() << ",$" << tab[6]->get_id()<< ",$" << tab[7]->get_id()<< ",$" << tab[8]->get_id() << ",$" << tab[9]->get_id() << ",$" << tab[10]->get_id()<< ",$" << tab[11]->get_id() << ",$" << tab[12]->get_id() << ",$" << tab[13]->get_id() << ",$" << tab[14]->get_id() << ",$" << tab[15]->get_id() << ",$" << tab[16]->get_id()<< ",$" << tab[17]->get_id()<< ",$" << tab[18]->get_id()<< ",$" << tab[19]->get_id()<<");" << std::endl; |
436 |
|
|
|
437 |
francois |
310 |
} |
438 |
francois |
637 |
|
439 |
|
|
|
440 |
|
|
|
441 |
|
|
int FEM_HEXA20::get_nb_pt_gauss(int degre) |
442 |
|
|
{ |
443 |
francois |
754 |
return OT_POINTS_GAUSS::get_nb_point_hexa_prod(degre); |
444 |
francois |
637 |
} |
445 |
|
|
|
446 |
|
|
void FEM_HEXA20::get_pt_gauss(int degre,int num,double &w,double *uvw) |
447 |
|
|
{ |
448 |
francois |
754 |
return OT_POINTS_GAUSS::get_pt_gauss_hex_prod(degre,num,w,uvw); |
449 |
francois |
637 |
} |
450 |
francois |
638 |
int FEM_HEXA20::get_nb_fonction_interpolation(void) |
451 |
francois |
310 |
{ |
452 |
|
|
return 20; |
453 |
|
|
} |
454 |
francois |
638 |
int FEM_HEXA20::get_degremax_fonction_interpolation(void) |
455 |
|
|
{ |
456 |
|
|
return 4; |
457 |
|
|
} |
458 |
francois |
310 |
|
459 |
francois |
757 |
int FEM_HEXA20::get_degre_gauss(int num) |
460 |
|
|
{ |
461 |
|
|
return OT_POINTS_GAUSS::get_degre_gauss_hexa_prod(num); |
462 |
|
|
} |
463 |
|
|
|
464 |
|
|
|
465 |
francois |
310 |
double FEM_HEXA20::get_fonction_interpolation(int num,double *uv) |
466 |
|
|
{ |
467 |
|
|
double val; |
468 |
|
|
switch (num) |
469 |
|
|
{ |
470 |
|
|
case 1: |
471 |
|
|
{double a=-1; |
472 |
|
|
double b=-1; |
473 |
|
|
double c=-1; |
474 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
475 |
|
|
break;} |
476 |
|
|
case 3: |
477 |
|
|
{double a=1; |
478 |
|
|
double b=-1; |
479 |
|
|
double c=-1; |
480 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
481 |
|
|
break;} |
482 |
|
|
case 5: |
483 |
|
|
{double a=1; |
484 |
|
|
double b=1; |
485 |
|
|
double c=-1; |
486 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
487 |
|
|
break;} |
488 |
|
|
case 7: |
489 |
|
|
{double a=-1; |
490 |
|
|
double b=1; |
491 |
|
|
double c=-1; |
492 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
493 |
|
|
break;} |
494 |
|
|
case 13: |
495 |
|
|
{double a=-1; |
496 |
|
|
double b=-1; |
497 |
|
|
double c=1; |
498 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
499 |
|
|
break;} |
500 |
|
|
case 15: |
501 |
|
|
{double a=1; |
502 |
|
|
double b=-1; |
503 |
|
|
double c=1; |
504 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
505 |
|
|
break;} |
506 |
|
|
case 17: |
507 |
|
|
{double a=1; |
508 |
|
|
double b=1; |
509 |
|
|
double c=1; |
510 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
511 |
|
|
break;} |
512 |
|
|
case 19: |
513 |
|
|
{double a=-1; |
514 |
|
|
double b=1; |
515 |
|
|
double c=1; |
516 |
|
|
val=0.125*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.+uv[2]*c)*(-2.+uv[0]*a+uv[1]*b+uv[2]*c); |
517 |
|
|
break;} |
518 |
|
|
case 2: |
519 |
|
|
{double a=0.; |
520 |
|
|
double b=-1; |
521 |
|
|
double c=-1; |
522 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
523 |
|
|
break;} |
524 |
|
|
case 6: |
525 |
|
|
{double a=0.; |
526 |
|
|
double b=1; |
527 |
|
|
double c=-1; |
528 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
529 |
|
|
break;} |
530 |
|
|
case 14: |
531 |
|
|
{double a=0.; |
532 |
|
|
double b=-1; |
533 |
|
|
double c=1; |
534 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
535 |
|
|
break;} |
536 |
|
|
case 18: |
537 |
|
|
{double a=0.; |
538 |
|
|
double b=1; |
539 |
|
|
double c=1; |
540 |
|
|
val=0.25*(1.-uv[0]*uv[0])*(1.+uv[1]*b)*(1.+uv[2]*c); |
541 |
|
|
break;} |
542 |
|
|
case 4: |
543 |
|
|
{double a=1.; |
544 |
|
|
double b=0.; |
545 |
|
|
double c=-1; |
546 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
547 |
|
|
break;} |
548 |
|
|
case 8: |
549 |
|
|
{double a=-1.; |
550 |
|
|
double b=0.; |
551 |
|
|
double c=-1; |
552 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
553 |
|
|
break;} |
554 |
|
|
case 16: |
555 |
|
|
{double a=1.; |
556 |
|
|
double b=0.; |
557 |
|
|
double c=1; |
558 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
559 |
|
|
break;} |
560 |
|
|
case 20: |
561 |
|
|
{double a=-1.; |
562 |
|
|
double b=0.; |
563 |
|
|
double c=1; |
564 |
|
|
val=0.25*(1.+uv[0]*a)*(1.-uv[1]*uv[1])*(1.+uv[2]*c); |
565 |
|
|
break;} |
566 |
|
|
case 9: |
567 |
|
|
{double a=-1.; |
568 |
|
|
double b=-1.; |
569 |
|
|
double c=0.; |
570 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
571 |
|
|
break;} |
572 |
|
|
case 10: |
573 |
|
|
{double a=1.; |
574 |
|
|
double b=-1.; |
575 |
|
|
double c=0.; |
576 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
577 |
|
|
break;} |
578 |
|
|
case 11: |
579 |
|
|
{double a=1.; |
580 |
|
|
double b=1.; |
581 |
|
|
double c=0.; |
582 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
583 |
|
|
break;} |
584 |
|
|
case 12: |
585 |
|
|
{double a=-1.; |
586 |
|
|
double b=1.; |
587 |
|
|
double c=0.; |
588 |
|
|
val=0.25*(1.+uv[0]*a)*(1.+uv[1]*b)*(1.-uv[2]*uv[2]); |
589 |
|
|
break;} |
590 |
|
|
|
591 |
|
|
|
592 |
|
|
} |
593 |
|
|
return val; |
594 |
|
|
} |
595 |
francois |
684 |
void FEM_HEXA20::reinit_boite_3D(void) |
596 |
|
|
{ |
597 |
|
|
FEM_TEMPLATE_ELEMENT<20>::reinit_boite_3D(); |
598 |
|
|
} |
599 |
francois |
310 |
|
600 |
|
|
double FEM_HEXA20::get_fonction_derive_interpolation(int num,int num_variable,double *uv) |
601 |
|
|
{ |
602 |
|
|
double val; |
603 |
|
|
switch (num) |
604 |
|
|
{ |
605 |
|
|
case 1: |
606 |
|
|
{ |
607 |
|
|
double a=-1; |
608 |
|
|
double b=-1; |
609 |
|
|
double c=-1; |
610 |
|
|
switch (num_variable) |
611 |
|
|
{ |
612 |
|
|
case 1: |
613 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
614 |
|
|
break; |
615 |
|
|
case 2: |
616 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
617 |
|
|
break; |
618 |
|
|
case 3: |
619 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
620 |
|
|
break; |
621 |
|
|
} break;} |
622 |
|
|
case 3: |
623 |
|
|
{ |
624 |
|
|
double a=1; |
625 |
|
|
double b=-1; |
626 |
|
|
double c=-1; |
627 |
|
|
switch (num_variable) |
628 |
|
|
{ |
629 |
|
|
case 1: |
630 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
631 |
|
|
break; |
632 |
|
|
case 2: |
633 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
634 |
|
|
break; |
635 |
|
|
case 3: |
636 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
637 |
|
|
break; |
638 |
|
|
} break;} |
639 |
|
|
case 5: |
640 |
|
|
{ |
641 |
|
|
double a=1; |
642 |
|
|
double b=1; |
643 |
|
|
double c=-1; |
644 |
|
|
switch (num_variable) |
645 |
|
|
{ |
646 |
|
|
case 1: |
647 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
648 |
|
|
break; |
649 |
|
|
case 2: |
650 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
651 |
|
|
break; |
652 |
|
|
case 3: |
653 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
654 |
|
|
break; |
655 |
|
|
} break;} |
656 |
|
|
case 7: |
657 |
|
|
{ |
658 |
|
|
double a=-1; |
659 |
|
|
double b=1; |
660 |
|
|
double c=-1; |
661 |
|
|
switch (num_variable) |
662 |
|
|
{ |
663 |
|
|
case 1: |
664 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
665 |
|
|
break; |
666 |
|
|
case 2: |
667 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
668 |
|
|
break; |
669 |
|
|
case 3: |
670 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
671 |
|
|
break; |
672 |
|
|
} break;} |
673 |
|
|
case 13: |
674 |
|
|
{ |
675 |
|
|
double a=-1; |
676 |
|
|
double b=-1; |
677 |
|
|
double c=1; |
678 |
|
|
switch (num_variable) |
679 |
|
|
{ |
680 |
|
|
case 1: |
681 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
682 |
|
|
break; |
683 |
|
|
case 2: |
684 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
685 |
|
|
break; |
686 |
|
|
case 3: |
687 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
688 |
|
|
break; |
689 |
|
|
} break;} |
690 |
|
|
case 15: |
691 |
|
|
{ |
692 |
|
|
double a=1; |
693 |
|
|
double b=-1; |
694 |
|
|
double c=1; |
695 |
|
|
switch (num_variable) |
696 |
|
|
{ |
697 |
|
|
case 1: |
698 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
699 |
|
|
break; |
700 |
|
|
case 2: |
701 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
702 |
|
|
break; |
703 |
|
|
case 3: |
704 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
705 |
|
|
break; |
706 |
|
|
} break;} |
707 |
|
|
case 17: |
708 |
|
|
{ |
709 |
|
|
double a=1; |
710 |
|
|
double b=1; |
711 |
|
|
double c=1; |
712 |
|
|
switch (num_variable) |
713 |
|
|
{ |
714 |
|
|
case 1: |
715 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
716 |
|
|
break; |
717 |
|
|
case 2: |
718 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
719 |
|
|
break; |
720 |
|
|
case 3: |
721 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
722 |
|
|
break; |
723 |
|
|
} break;} |
724 |
|
|
case 19: |
725 |
|
|
{ |
726 |
|
|
double a=-1; |
727 |
|
|
double b=1; |
728 |
|
|
double c=1; |
729 |
|
|
switch (num_variable) |
730 |
|
|
{ |
731 |
|
|
case 1: |
732 |
|
|
val=0.125*a*(1+uv[1]*b)*(1+uv[2]*c)*(-1+2*uv[0]*a+uv[1]*b+uv[2]*c); |
733 |
|
|
break; |
734 |
|
|
case 2: |
735 |
|
|
val=0.125*b*(1+uv[0]*a)*(1+uv[2]*c)*(-1+uv[0]*a+2*uv[1]*b+uv[2]*c); |
736 |
|
|
break; |
737 |
|
|
case 3: |
738 |
|
|
val=0.125*c*(1+uv[0]*a)*(1+uv[1]*b)*(-1+uv[0]*a+uv[1]*b+2*uv[2]*c); |
739 |
|
|
break; |
740 |
|
|
} break;} |
741 |
|
|
case 2: |
742 |
|
|
{ |
743 |
|
|
double a=0; |
744 |
|
|
double b=-1; |
745 |
|
|
double c=-1; |
746 |
|
|
switch (num_variable) |
747 |
|
|
{ |
748 |
|
|
case 1: |
749 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
750 |
|
|
break; |
751 |
|
|
case 2: |
752 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
753 |
|
|
break; |
754 |
|
|
case 3: |
755 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
756 |
|
|
break; |
757 |
|
|
} break;} |
758 |
|
|
case 18: |
759 |
|
|
{ |
760 |
|
|
double a=0; |
761 |
|
|
double b=1; |
762 |
|
|
double c=1; |
763 |
|
|
switch (num_variable) |
764 |
|
|
{ |
765 |
|
|
case 1: |
766 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
767 |
|
|
break; |
768 |
|
|
case 2: |
769 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
770 |
|
|
break; |
771 |
|
|
case 3: |
772 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
773 |
|
|
break; |
774 |
|
|
} break;} |
775 |
|
|
case 14: |
776 |
|
|
{ |
777 |
|
|
double a=0; |
778 |
|
|
double b=-1; |
779 |
|
|
double c=1; |
780 |
|
|
switch (num_variable) |
781 |
|
|
{ |
782 |
|
|
case 1: |
783 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
784 |
|
|
break; |
785 |
|
|
case 2: |
786 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
787 |
|
|
break; |
788 |
|
|
case 3: |
789 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
790 |
|
|
break; |
791 |
|
|
} break;} |
792 |
|
|
case 6: |
793 |
|
|
{ |
794 |
|
|
double a=0; |
795 |
|
|
double b=1; |
796 |
|
|
double c=-1; |
797 |
|
|
switch (num_variable) |
798 |
|
|
{ |
799 |
|
|
case 1: |
800 |
|
|
val=-0.5*uv[0]*(1+uv[1]*b)*(1+uv[2]*c); |
801 |
|
|
break; |
802 |
|
|
case 2: |
803 |
|
|
val=0.25*b*(1-uv[0]*uv[0])*(1+uv[2]*c); |
804 |
|
|
break; |
805 |
|
|
case 3: |
806 |
|
|
val=0.25*c*(1-uv[0]*uv[0])*(1+uv[1]*b); |
807 |
|
|
break; |
808 |
|
|
} break;} |
809 |
|
|
case 4: |
810 |
|
|
{ |
811 |
|
|
double a=1; |
812 |
|
|
double b=0; |
813 |
|
|
double c=-1; |
814 |
|
|
switch (num_variable) |
815 |
|
|
{ |
816 |
|
|
case 1: |
817 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
818 |
|
|
break; |
819 |
|
|
case 2: |
820 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
821 |
|
|
break; |
822 |
|
|
case 3: |
823 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
824 |
|
|
break; |
825 |
|
|
} break;} |
826 |
|
|
case 8: |
827 |
|
|
{ |
828 |
|
|
double a=-1; |
829 |
|
|
double b=0; |
830 |
|
|
double c=-1; |
831 |
|
|
switch (num_variable) |
832 |
|
|
{ |
833 |
|
|
case 1: |
834 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
835 |
|
|
break; |
836 |
|
|
case 2: |
837 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
838 |
|
|
break; |
839 |
|
|
case 3: |
840 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
841 |
|
|
break; |
842 |
|
|
} break;} |
843 |
|
|
case 16: |
844 |
|
|
{ |
845 |
|
|
double a=1; |
846 |
|
|
double b=0; |
847 |
|
|
double c=1; |
848 |
|
|
switch (num_variable) |
849 |
|
|
{ |
850 |
|
|
case 1: |
851 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
852 |
|
|
break; |
853 |
|
|
case 2: |
854 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
855 |
|
|
break; |
856 |
|
|
case 3: |
857 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
858 |
|
|
break; |
859 |
|
|
} break;} |
860 |
|
|
case 20: |
861 |
|
|
{ |
862 |
|
|
double a=-1; |
863 |
|
|
double b=0; |
864 |
|
|
double c=1; |
865 |
|
|
switch (num_variable) |
866 |
|
|
{ |
867 |
|
|
case 1: |
868 |
|
|
val=0.25*a*(1-uv[1]*uv[1])*(1+uv[2]*c); |
869 |
|
|
break; |
870 |
|
|
case 2: |
871 |
|
|
val=-0.5*uv[1]*(1+uv[0]*a)*(1+uv[2]*c); |
872 |
|
|
break; |
873 |
|
|
case 3: |
874 |
|
|
val=0.25*c*(1+uv[0]*a)*(1-uv[1]*uv[1]); |
875 |
|
|
break; |
876 |
|
|
} break;} |
877 |
|
|
case 9: |
878 |
|
|
{ |
879 |
|
|
double a=-1; |
880 |
|
|
double b=-1; |
881 |
|
|
double c=0.; |
882 |
|
|
switch (num_variable) |
883 |
|
|
{ |
884 |
|
|
case 1: |
885 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
886 |
|
|
break; |
887 |
|
|
case 2: |
888 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
889 |
|
|
break; |
890 |
|
|
case 3: |
891 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
892 |
|
|
break; |
893 |
|
|
} break;} |
894 |
|
|
case 10: |
895 |
|
|
{ |
896 |
|
|
double a=1; |
897 |
|
|
double b=-1; |
898 |
|
|
double c=0.; |
899 |
|
|
switch (num_variable) |
900 |
|
|
{ |
901 |
|
|
case 1: |
902 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
903 |
|
|
break; |
904 |
|
|
case 2: |
905 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
906 |
|
|
break; |
907 |
|
|
case 3: |
908 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
909 |
|
|
break; |
910 |
|
|
} break;} |
911 |
|
|
case 11: |
912 |
|
|
{ |
913 |
|
|
double a=1; |
914 |
|
|
double b=1; |
915 |
|
|
double c=0.; |
916 |
|
|
switch (num_variable) |
917 |
|
|
{ |
918 |
|
|
case 1: |
919 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
920 |
|
|
break; |
921 |
|
|
case 2: |
922 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
923 |
|
|
break; |
924 |
|
|
case 3: |
925 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
926 |
|
|
break; |
927 |
|
|
} break;} |
928 |
|
|
case 12: |
929 |
|
|
{ |
930 |
|
|
double a=-1; |
931 |
|
|
double b=1; |
932 |
|
|
double c=0.; |
933 |
|
|
switch (num_variable) |
934 |
|
|
{ |
935 |
|
|
case 1: |
936 |
|
|
val=0.25*a*(1+uv[1]*b)*(1-uv[2]*uv[2]); |
937 |
|
|
break; |
938 |
|
|
case 2: |
939 |
|
|
val=0.25*b*(1+uv[0]*a)*(1-uv[2]*uv[2]); |
940 |
|
|
break; |
941 |
|
|
case 3: |
942 |
|
|
val=-0.5*uv[2]*(1+uv[0]*a)*(1+uv[1]*b); |
943 |
|
|
break; |
944 |
|
|
} break;} |
945 |
|
|
|
946 |
|
|
} |
947 |
|
|
return val; |
948 |
|
|
} |
949 |
|
|
|
950 |
|
|
double FEM_HEXA20::get_jacobien(double* jac,double *uv,int& li,int& col,double unite) |
951 |
|
|
{ |
952 |
|
|
li=3;col=3; |
953 |
|
|
OT_TENSEUR Ni(3,20),Xi(20,3); |
954 |
|
|
for (int i=0;i<3;i++) |
955 |
|
|
for (int j=0;j<20;j++) |
956 |
|
|
Ni(i,j)=get_fonction_derive_interpolation(j+1,i+1,uv); |
957 |
|
|
for (int i=0;i<20;i++) |
958 |
|
|
{ |
959 |
|
|
double *xyz=tab[i]->get_coord(); |
960 |
|
|
Xi(i,0)=xyz[0]*unite; |
961 |
|
|
Xi(i,1)=xyz[1]*unite; |
962 |
|
|
Xi(i,2)=xyz[2]*unite; |
963 |
|
|
} |
964 |
|
|
OT_TENSEUR jacobi=Ni*Xi; |
965 |
|
|
jac[0]=jacobi(0,0).get_x(); |
966 |
|
|
jac[1]=jacobi(0,1).get_x(); |
967 |
|
|
jac[2]=jacobi(0,2).get_x(); |
968 |
|
|
jac[3]=jacobi(1,0).get_x(); |
969 |
|
|
jac[4]=jacobi(1,1).get_x(); |
970 |
|
|
jac[5]=jacobi(1,2).get_x(); |
971 |
|
|
jac[6]=jacobi(2,0).get_x(); |
972 |
|
|
jac[7]=jacobi(2,1).get_x(); |
973 |
|
|
jac[8]=jacobi(2,2).get_x(); |
974 |
|
|
double det=jac[0]*jac[4]*jac[8]+jac[3]*jac[7]*jac[2]+jac[6]*jac[1]*jac[5]-jac[2]*jac[4]*jac[6]-jac[5]*jac[7]*jac[0]-jac[8]*jac[1]*jac[3]; |
975 |
|
|
return det; |
976 |
|
|
|
977 |
|
|
} |
978 |
|
|
|
979 |
|
|
void FEM_HEXA20::get_inverse_jacob(double* j,double *uv,double unite) |
980 |
|
|
{ |
981 |
|
|
double jac[9]; |
982 |
|
|
int li,col; |
983 |
|
|
double detj=get_jacobien(jac,uv,li,col,unite); |
984 |
|
|
j[0*3+0] = (jac[1*3+1]*jac[2*3+2]-jac[1*3+2]*jac[2*3+1])/(detj); |
985 |
|
|
j[0*3+1] = -(jac[0*3+1]*jac[2*3+2]-jac[0*3+2]*jac[2*3+1])/(detj); |
986 |
|
|
j[0*3+2] =-(-jac[0*3+1]*jac[1*3+2]+jac[0*3+2]*jac[1*3+1])/(detj); |
987 |
|
|
|
988 |
|
|
j[1*3+0] = -(jac[1*3+0]*jac[2*3+2]-jac[1*3+2]*jac[2*3+0])/(detj); |
989 |
|
|
j[1*3+1] = (jac[0*3+0]*jac[2*3+2]-jac[0*3+2]*jac[2*3+0])/(detj); |
990 |
|
|
j[1*3+2] = -(jac[0*3+0]*jac[1*3+2]-jac[0*3+2]*jac[1*3+0])/(detj); |
991 |
|
|
|
992 |
|
|
j[2*3+0] =-(-jac[1*3+0]*jac[2*3+1]+jac[1*3+1]*jac[2*3+0])/(detj); |
993 |
|
|
j[2*3+1] = -(jac[0*3+0]*jac[2*3+1]-jac[0*3+1]*jac[2*3+0])/(detj); |
994 |
|
|
j[2*3+2] = (jac[0*3+0]*jac[1*3+1]-jac[0*3+1]*jac[1*3+0])/(detj); |
995 |
|
|
|
996 |
francois |
405 |
} |
997 |
|
|
|
998 |
francois |
635 |
bool FEM_HEXA20::valide_parametre_EF(double* uvw) |
999 |
|
|
{ |
1000 |
francois |
674 |
if (uvw[0]>=-1.-1e-10) |
1001 |
|
|
if (uvw[1]>=-1.-1e-10) |
1002 |
|
|
if (uvw[2]>=-1.-1e-10) |
1003 |
francois |
635 |
if (uvw[0]<=1.+1e-10) |
1004 |
|
|
if (uvw[1]<=1.+1e-10) |
1005 |
|
|
if (uvw[2]<=1.+1e-10) |
1006 |
|
|
return true; |
1007 |
|
|
return false; |
1008 |
|
|
} |
1009 |
francois |
405 |
|
1010 |
francois |
406 |
int FEM_HEXA20::verifie_validite_decoupage_xfem(double *vol) |
1011 |
francois |
405 |
{ |
1012 |
|
|
|
1013 |
couturad |
944 |
} |