1 |
|
5 |
/* BOUGE DE POINTS SAUCE P.L.GEORGE Article INRIA STRUCOME 1994 */
|
2 |
|
|
#include <stdio.h>
|
3 |
|
|
#include <math.h>
|
4 |
|
|
#include "m3d_struct.h"
|
5 |
|
|
#include "m3d_const.h"
|
6 |
|
|
#include "m3d_hotes.h"
|
7 |
|
|
#include "m3d_erreur.h"
|
8 |
|
|
#include "prototype.h"
|
9 |
|
|
extern int debug ;
|
10 |
|
|
extern float crit_min ;
|
11 |
|
|
int m3d_move2(float *coord,int nb_noeud,int nb_face,int *tabele,float *vcorg,float *critere,int *numele)
|
12 |
|
|
{
|
13 |
|
|
int num_p ;
|
14 |
|
|
int tab_tetra[400] ;
|
15 |
|
|
int nb_ele, i, j, k, nump ;
|
16 |
|
|
float tab_crit[1000], vec_opt[3], cmin ;
|
17 |
|
|
float tab_opt[3000] ;
|
18 |
|
|
int sens ;
|
19 |
|
|
float gamma, vn[3], xi, yi, zi, vab[3], vac[3], vbc[3], pvec[3], hauteur, vap[3] ;
|
20 |
|
|
float dab, dac, dbc, perimetre, norme, coeff, alpha ;
|
21 |
|
|
float delta[3] ;
|
22 |
|
|
float vec_save[3], bmin, bmax, eps, crit_save ;
|
23 |
|
|
float calpha, calpha_moins_eps, vresu[3] ;
|
24 |
|
|
|
25 |
|
|
nump = nb_noeud ;
|
26 |
|
|
coord[x(nump)] = vcorg[0] ;
|
27 |
|
|
coord[y(nump)] = vcorg[1] ;
|
28 |
|
|
coord[z(nump)] = vcorg[2] ;
|
29 |
|
|
|
30 |
|
|
/* sauvegarde des coordonnees du noeud */
|
31 |
|
|
vec_save[0] = coord[x(nump)] ;
|
32 |
|
|
vec_save[1] = coord[y(nump)] ;
|
33 |
|
|
vec_save[2] = coord[z(nump)] ;
|
34 |
|
|
|
35 |
|
|
for (nb_ele=0;nb_ele<nb_face;nb_ele++)
|
36 |
|
|
{
|
37 |
|
|
numele[4*nb_ele] = tabele[3*nb_ele] ;
|
38 |
|
|
numele[4*nb_ele+1] = tabele[3*nb_ele+1] ;
|
39 |
|
|
numele[4*nb_ele+2] = tabele[3*nb_ele+2] ;
|
40 |
|
|
numele[4*nb_ele+3] = nump ;
|
41 |
|
|
/* determination du point optimal de la face nb_ele */
|
42 |
|
|
|
43 |
|
|
xi = (coord[x(tabele[3*nb_ele])] + coord[x(tabele[3*nb_ele+1])] + coord[x(tabele[3*nb_ele+2])])/3. ;
|
44 |
|
|
yi = (coord[y(tabele[3*nb_ele])] + coord[y(tabele[3*nb_ele+1])] + coord[y(tabele[3*nb_ele+2])])/3. ;
|
45 |
|
|
zi = (coord[z(tabele[3*nb_ele])] + coord[z(tabele[3*nb_ele+1])] + coord[z(tabele[3*nb_ele+2])])/3. ;
|
46 |
|
|
|
47 |
|
|
/* calcul de la normale a la face */
|
48 |
|
|
vab[0] = coord[x(tabele[3*nb_ele+1])] - coord[x(tabele[3*nb_ele])] ;
|
49 |
|
|
vab[1] = coord[y(tabele[3*nb_ele+1])] - coord[y(tabele[3*nb_ele])] ;
|
50 |
|
|
vab[2] = coord[z(tabele[3*nb_ele+1])] - coord[z(tabele[3*nb_ele])] ;
|
51 |
|
|
dab = NORME(vab) ;
|
52 |
|
|
vac[0] = coord[x(tabele[3*nb_ele+2])] - coord[x(tabele[3*nb_ele])] ;
|
53 |
|
|
vac[1] = coord[y(tabele[3*nb_ele+2])] - coord[y(tabele[3*nb_ele])] ;
|
54 |
|
|
vac[2] = coord[z(tabele[3*nb_ele+2])] - coord[z(tabele[3*nb_ele])] ;
|
55 |
|
|
dac = NORME(vac) ;
|
56 |
|
|
vbc[0] = coord[x(tabele[3*nb_ele+2])] - coord[x(tabele[3*nb_ele+1])] ;
|
57 |
|
|
vbc[1] = coord[y(tabele[3*nb_ele+2])] - coord[y(tabele[3*nb_ele+1])] ;
|
58 |
|
|
vbc[2] = coord[z(tabele[3*nb_ele+2])] - coord[z(tabele[3*nb_ele+1])] ;
|
59 |
|
|
dbc = NORME(vbc) ;
|
60 |
|
|
|
61 |
|
|
pvec[0] = PVECX(vab,vac) ;
|
62 |
|
|
pvec[1] = PVECY(vab,vac) ;
|
63 |
|
|
pvec[2] = PVECZ(vab,vac) ;
|
64 |
|
|
perimetre = dab + dbc + dac ;
|
65 |
|
|
hauteur = (perimetre/3.) * 0.8 ;
|
66 |
|
|
|
67 |
|
|
vn[0] = PVECX(vab,vac) ;
|
68 |
|
|
vn[1] = PVECY(vab,vac) ;
|
69 |
|
|
vn[2] = PVECZ(vab,vac) ;
|
70 |
|
|
norme = NORME(vn) ;
|
71 |
|
|
if (norme<EPSILON)
|
72 |
|
|
{
|
73 |
|
|
//if (debug) aff_text("normale nulle M3D_MOVE\n ") ;
|
74 |
|
|
m3d_erreur(ERR_SYST) ;
|
75 |
|
|
return(FAUX) ;
|
76 |
|
|
}
|
77 |
|
|
for (i=0;i<3;i++) vn[i] = vn[i]/norme ;
|
78 |
|
|
/* calcul du vecteur AP et orientation de la face */
|
79 |
|
|
vap[0] = coord[x(nump)] - coord[x(tabele[3*nb_ele])] ;
|
80 |
|
|
vap[1] = coord[y(nump)] - coord[y(tabele[3*nb_ele])] ;
|
81 |
|
|
vap[2] = coord[z(nump)] - coord[z(tabele[3*nb_ele])] ;
|
82 |
|
|
if (PROSCA(vap,vn) < EPSILON)
|
83 |
|
|
{
|
84 |
|
|
for (i=0;i<3;i++) vn[i] = -1. * vn[i] ;
|
85 |
|
|
i = tabele[3*nb_ele+1] ;
|
86 |
|
|
tabele[3*nb_ele+1] = tabele[3*nb_ele+2] ;
|
87 |
|
|
tabele[3*nb_ele+2] = i ;
|
88 |
|
|
}
|
89 |
|
|
/* point optimal */
|
90 |
|
|
tab_opt[x(nb_ele)] = xi + hauteur * vn[0] ;
|
91 |
|
|
tab_opt[y(nb_ele)] = yi + hauteur * vn[1] ;
|
92 |
|
|
tab_opt[z(nb_ele)] = zi + hauteur * vn[2] ;
|
93 |
|
|
}
|
94 |
|
|
nb_ele = nb_face ;
|
95 |
|
|
/* calcul de la qualite de chaque tetraedre */
|
96 |
|
|
cmin = 1. ;
|
97 |
|
|
for (i=0;i<nb_ele;i++)
|
98 |
|
|
{
|
99 |
|
|
/* calcul du critere */
|
100 |
|
|
tab_crit[i] = m3d_e_qual2(coord,tabele[3*i],tabele[3*i+1],tabele[3*i+2],nump) ;
|
101 |
|
|
if (tab_crit[i]<EPSILON)
|
102 |
|
|
{
|
103 |
|
|
// if (debug) aff_text(" critere nul M3D_MOVE \n") ;
|
104 |
|
|
m3d_erreur(ERR_SYST) ;
|
105 |
|
|
return(FAUX) ;
|
106 |
|
|
}
|
107 |
|
|
if (tab_crit[i] < cmin) cmin = tab_crit[i] ;
|
108 |
|
|
}
|
109 |
|
|
/* calcul des coordonnees du point ideal */
|
110 |
|
|
gamma = 0. ;
|
111 |
|
|
for (i=0;i<nb_ele;i++)
|
112 |
|
|
{
|
113 |
|
|
gamma = gamma + 1./(tab_crit[i]*tab_crit[i]) ;/* somme des carres des inverses */
|
114 |
|
|
}
|
115 |
|
|
/* calcul du point optimal pour la boule */
|
116 |
|
|
gamma = 1./gamma ;
|
117 |
|
|
vec_opt[0] = 0. ;
|
118 |
|
|
vec_opt[1] = 0. ;
|
119 |
|
|
vec_opt[2] = 0. ;
|
120 |
|
|
|
121 |
|
|
for (i=0;i<nb_ele;i++)
|
122 |
|
|
{
|
123 |
|
|
coeff = gamma/(tab_crit[i]*tab_crit[i]) ;
|
124 |
|
|
vec_opt[0] = vec_opt[0] + coeff * tab_opt[x(i)] ;
|
125 |
|
|
vec_opt[1] = vec_opt[1] + coeff * tab_opt[y(i)] ;
|
126 |
|
|
vec_opt[2] = vec_opt[2] + coeff * tab_opt[z(i)] ;
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
delta[0] = vec_opt[0] - coord[x(nump)] ;
|
130 |
|
|
delta[1] = vec_opt[1] - coord[y(nump)] ;
|
131 |
|
|
delta[2] = vec_opt[2] - coord[z(nump)] ;
|
132 |
|
|
/* sauvegarde du critere mini */
|
133 |
|
|
crit_save = cmin ;
|
134 |
|
|
*critere = cmin ;
|
135 |
|
|
/* initialisation des bornes du parametre */
|
136 |
|
|
bmin = 0. ;
|
137 |
|
|
bmax = 1. ;
|
138 |
|
|
sens = 1 ;/* augmnentation */
|
139 |
|
|
|
140 |
|
|
vresu[0] = vec_save[0] ;
|
141 |
|
|
vresu[1] = vec_save[1] ;
|
142 |
|
|
vresu[2] = vec_save[2] ;
|
143 |
|
|
|
144 |
|
|
for (i=0;i<5;i++)
|
145 |
|
|
{
|
146 |
|
|
alpha = 0.5 * (bmin + bmax) ;
|
147 |
|
|
coord[x(nump)] = vec_save[0] + alpha * delta[0] ;
|
148 |
|
|
coord[y(nump)] = vec_save[1] + alpha * delta[1] ;
|
149 |
|
|
coord[z(nump)] = vec_save[2] + alpha * delta[2] ;
|
150 |
|
|
|
151 |
|
|
/* evaluation de la qualite pour la valeur alpha */
|
152 |
|
|
/* on evalue la qualite cmin pour alpha */
|
153 |
|
|
calpha = 1. ;
|
154 |
|
|
for (j=0;j<nb_ele;j++)
|
155 |
|
|
{
|
156 |
|
|
/* calcul du critere */
|
157 |
|
|
tab_crit[j] = m3d_e_qual2(coord,tabele[3*j],tabele[3*j+1],tabele[3*j+2],nump) ;
|
158 |
|
|
if (tab_crit[j] < calpha) calpha = tab_crit[j] ;
|
159 |
|
|
}
|
160 |
|
|
/* la valeur du critere pour alpha est superieure, il faut la stocker */
|
161 |
|
|
if (calpha > crit_save)
|
162 |
|
|
{
|
163 |
|
|
vresu[0] = coord[x(nump)] ;
|
164 |
|
|
vresu[1] = coord[y(nump)] ;
|
165 |
|
|
vresu[2] = coord[z(nump)] ;
|
166 |
|
|
crit_save = calpha ;
|
167 |
|
|
*critere = crit_save ;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/* on evalue la qualite c1 pour alpha - eps */
|
171 |
|
|
eps = (bmax-bmin)/50. ;
|
172 |
|
|
coord[x(nump)] = vec_save[0] + (alpha - eps) * delta[0] ;
|
173 |
|
|
coord[y(nump)] = vec_save[1] + (alpha - eps) * delta[1] ;
|
174 |
|
|
coord[z(nump)] = vec_save[2] + (alpha - eps) * delta[2] ;
|
175 |
|
|
calpha_moins_eps = 1. ;
|
176 |
|
|
for (j=0;j<nb_ele;j++)
|
177 |
|
|
{
|
178 |
|
|
/* calcul du critere */
|
179 |
|
|
tab_crit[j] = m3d_e_qual2(coord,tabele[3*j],tabele[3*j+1],tabele[3*j+2],nump) ;
|
180 |
|
|
if (tab_crit[j] < calpha_moins_eps) calpha_moins_eps = tab_crit[j] ;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
coord[x(nump)] = vec_save[0] + alpha * delta[0] ;
|
184 |
|
|
coord[y(nump)] = vec_save[1] + alpha * delta[1] ;
|
185 |
|
|
coord[z(nump)] = vec_save[2] + alpha * delta[2] ;
|
186 |
|
|
|
187 |
|
|
if (calpha_moins_eps < calpha)
|
188 |
|
|
{
|
189 |
|
|
bmin = alpha ;
|
190 |
|
|
/* bmax est inchange */
|
191 |
|
|
}
|
192 |
|
|
else
|
193 |
|
|
{
|
194 |
|
|
/* bmin est inchange */
|
195 |
|
|
bmax = alpha ;
|
196 |
|
|
}
|
197 |
|
|
}
|
198 |
|
|
coord[x(nump)] = vresu[0] ;
|
199 |
|
|
coord[y(nump)] = vresu[1] ;
|
200 |
|
|
coord[z(nump)] = vresu[2] ;
|
201 |
|
|
|
202 |
|
|
return(VRAI) ;
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
|
206 |
|
|
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
|