1 |
foucault |
27 |
//------------------------------------------------------------
|
2 |
|
|
//------------------------------------------------------------
|
3 |
|
|
// MAGiC
|
4 |
|
|
// Jean Christophe Cuillière et Vincent FRANCOIS
|
5 |
|
|
// Département de Génie Mécanique - UQTR
|
6 |
|
|
//------------------------------------------------------------
|
7 |
|
|
// Le projet MAGIC est un projet de recherche du département
|
8 |
|
|
// de génie mécanique de l'Université du Québec à
|
9 |
|
|
// Trois Rivières
|
10 |
|
|
// Les librairies ne peuvent être utilisées sans l'accord
|
11 |
|
|
// des auteurs (contact : francois@uqtr.ca)
|
12 |
|
|
//------------------------------------------------------------
|
13 |
|
|
//------------------------------------------------------------
|
14 |
|
|
//
|
15 |
|
|
// mailleur1d.cpp
|
16 |
|
|
//
|
17 |
|
|
//------------------------------------------------------------
|
18 |
|
|
//------------------------------------------------------------
|
19 |
|
|
// COPYRIGHT 2000
|
20 |
|
|
// Version du 02/03/2006 à 11H23
|
21 |
|
|
//------------------------------------------------------------
|
22 |
|
|
//------------------------------------------------------------
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "gestionversion.h"
|
26 |
|
|
#include <math.h>
|
27 |
|
|
#include <vector>
|
28 |
|
|
#include "CAD4FE_mailleur1d.h"
|
29 |
|
|
|
30 |
|
|
#include "CAD4FE_MCNode.h"
|
31 |
|
|
#include "CAD4FE_MCSegment.h"
|
32 |
|
|
#include "CAD4FE_MCEdge.h"
|
33 |
|
|
#include "CAD4FE_MCVertex.h"
|
34 |
|
|
#include "CAD4FE_PolyCurve.h"
|
35 |
|
|
//#include "affiche.h"
|
36 |
|
|
//#include "message.h"
|
37 |
|
|
#include <fstream>
|
38 |
|
|
|
39 |
|
|
using namespace CAD4FE;
|
40 |
|
|
|
41 |
|
|
struct integrale
|
42 |
|
|
{
|
43 |
|
|
double ti;
|
44 |
|
|
double li;
|
45 |
|
|
};
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
MAILLEUR1D::MAILLEUR1D(MG_MAILLAGE* mgmai,MG_GEOMETRIE *mggeo,MCEdge* __mcEdge,FCT_TAILLE* fct_taille):MAILLEUR(),mg_maillage(mgmai),mg_geometrie(mggeo),mcEdge(__mcEdge),metrique(fct_taille),debug(0)
|
49 |
|
|
{
|
50 |
|
|
}
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
MAILLEUR1D::~MAILLEUR1D()
|
55 |
|
|
{
|
56 |
|
|
}
|
57 |
|
|
|
58 |
|
|
MG_SOMMET * MAILLEUR1D::IsPointInRefVertex(PolyCurve * __polycurve, double __nodeCoord[3], double __relativeTolerance)
|
59 |
|
|
{
|
60 |
|
|
int nbRefV=__polycurve->GetRefEdgeCount();
|
61 |
|
|
double sqAbsoluteTolerance = __relativeTolerance*__polycurve->get_longueur();
|
62 |
|
|
sqAbsoluteTolerance *= sqAbsoluteTolerance;
|
63 |
|
|
OT_VECTEUR_3D xNode(__nodeCoord);
|
64 |
|
|
int i;
|
65 |
|
|
for (i=0;i<nbRefV;i++)
|
66 |
|
|
{
|
67 |
|
|
OT_VECTEUR_3D xRefVertex(0,0,0);
|
68 |
|
|
MG_SOMMET * vertex = __polycurve->GetRefVertex(i);
|
69 |
|
|
vertex->get_point()->evaluer(xRefVertex);
|
70 |
|
|
OT_VECTEUR_3D dx = xRefVertex-xNode;
|
71 |
|
|
double sqdistNodeToVertex = dx.get_longueur2();
|
72 |
|
|
if (sqdistNodeToVertex < sqAbsoluteTolerance)
|
73 |
|
|
{
|
74 |
|
|
return vertex;
|
75 |
|
|
}
|
76 |
|
|
}
|
77 |
|
|
return NULL;
|
78 |
|
|
}
|
79 |
|
|
|
80 |
|
|
void MAILLEUR1D::maille()
|
81 |
|
|
{
|
82 |
|
|
int creation_metrique=0;
|
83 |
|
|
if (metrique==NULL)
|
84 |
|
|
{
|
85 |
|
|
metrique=new FCT_TAILLE_ARETE(epsilon,distance_maximale,mcEdge);
|
86 |
|
|
creation_metrique=1;
|
87 |
|
|
}
|
88 |
|
|
|
89 |
|
|
/* calcul de la longueur de la arete dans la metrique */
|
90 |
|
|
double t1=mcEdge->get_cosommet1()->get_t();
|
91 |
|
|
double t2=mcEdge->get_cosommet2()->get_t();
|
92 |
|
|
if ((t2<t1+0.0001)&&(mcEdge->get_courbe()->est_periodique())) t2=t2+mcEdge->get_courbe()->get_periode();
|
93 |
|
|
|
94 |
|
|
std::vector<integrale> tab_integrale;
|
95 |
|
|
double ti,tii,t;
|
96 |
|
|
double longueur_metrique=0.;
|
97 |
|
|
tii=t1;
|
98 |
|
|
double dt=0.001;
|
99 |
|
|
do
|
100 |
|
|
{
|
101 |
|
|
refresh();
|
102 |
|
|
double coefficient_metrique_ti[9];
|
103 |
|
|
double coefficient_metrique_tii[9];
|
104 |
|
|
double coefficient_metrique_derive_ti[9];
|
105 |
|
|
ti=tii;
|
106 |
|
|
tii=ti+(t2-t1)*dt;
|
107 |
|
|
if (tii>t2) tii=t2;
|
108 |
|
|
|
109 |
|
|
#define ON_A_ABANDONNE_ET_ON_PREND_DT_EGALE_T2_MOINS_T1_DIVISE_PAR_1000
|
110 |
|
|
#ifndef ON_A_ABANDONNE_ET_ON_PREND_DT_EGALE_T2_MOINS_T1_DIVISE_PAR_1000
|
111 |
|
|
int bon_dt=0;
|
112 |
|
|
do
|
113 |
|
|
{
|
114 |
|
|
tii=ti+(t2-t1)*dt;
|
115 |
|
|
if (tii>t2) tii=t2;
|
116 |
|
|
double ddxyz[3];
|
117 |
|
|
double dxyz[3];
|
118 |
|
|
double xyz[3];
|
119 |
|
|
double dxyzii[3];
|
120 |
|
|
double xyzii[3];
|
121 |
|
|
mcEdge->deriver_seconde(ti,ddxyz,dxyz,xyz);
|
122 |
|
|
mcEdge->evaluer(tii,xyzii);
|
123 |
|
|
mcEdge->deriver(tii,dxyzii);
|
124 |
|
|
if (creation_metrique)
|
125 |
|
|
{
|
126 |
|
|
metrique->evaluer(&ti,coefficient_metrique_ti);
|
127 |
|
|
metrique->evaluer(&tii,coefficient_metrique_tii);
|
128 |
|
|
metrique->deriver(&ti,coefficient_metrique_derive_ti);
|
129 |
|
|
}
|
130 |
|
|
else
|
131 |
|
|
{
|
132 |
|
|
metrique->evaluer(xyz,coefficient_metrique_ti);
|
133 |
|
|
metrique->evaluer(xyzii,coefficient_metrique_tii);
|
134 |
|
|
metrique->deriver(xyz,coefficient_metrique_derive_ti);
|
135 |
|
|
}
|
136 |
|
|
double facteur1=dxyz[0]*dxyz[0]*coefficient_metrique_ti[0]+dxyz[0]*dxyz[1]*coefficient_metrique_ti[3]+dxyz[0]*dxyz[2]*coefficient_metrique_ti[6]+dxyz[1]*dxyz[0]*coefficient_metrique_ti[1]+dxyz[1]*dxyz[1]*coefficient_metrique_ti[4]+dxyz[1]*dxyz[2]*coefficient_metrique_ti[7]+dxyz[2]*dxyz[0]*coefficient_metrique_ti[2]+dxyz[2]*dxyz[1]*coefficient_metrique_ti[4]+dxyz[2]*dxyz[2]*coefficient_metrique_ti[8];
|
137 |
|
|
double facteur2=ddxyz[0]*dxyz[0]*coefficient_metrique_ti[0]+dxyz[0]*ddxyz[0]*coefficient_metrique_ti[0]+dxyz[0]*dxyz[0]*coefficient_metrique_derive_ti[0]+
|
138 |
|
|
ddxyz[0]*dxyz[1]*coefficient_metrique_ti[3]+dxyz[0]*ddxyz[1]*coefficient_metrique_ti[3]+dxyz[0]*dxyz[1]*coefficient_metrique_derive_ti[3]+
|
139 |
|
|
ddxyz[0]*dxyz[2]*coefficient_metrique_ti[6]+dxyz[0]*ddxyz[2]*coefficient_metrique_ti[6]+dxyz[0]*dxyz[2]*coefficient_metrique_derive_ti[6]+
|
140 |
|
|
ddxyz[1]*dxyz[0]*coefficient_metrique_ti[1]+dxyz[1]*ddxyz[0]*coefficient_metrique_ti[1]+dxyz[1]*dxyz[0]*coefficient_metrique_derive_ti[1]+
|
141 |
|
|
ddxyz[1]*dxyz[1]*coefficient_metrique_ti[4]+dxyz[1]*ddxyz[1]*coefficient_metrique_ti[4]+dxyz[1]*dxyz[1]*coefficient_metrique_derive_ti[4]+
|
142 |
|
|
ddxyz[1]*dxyz[2]*coefficient_metrique_ti[7]+dxyz[1]*ddxyz[2]*coefficient_metrique_ti[7]+dxyz[1]*dxyz[2]*coefficient_metrique_derive_ti[7]+
|
143 |
|
|
ddxyz[2]*dxyz[0]*coefficient_metrique_ti[2]+dxyz[2]*ddxyz[0]*coefficient_metrique_ti[2]+dxyz[2]*dxyz[0]*coefficient_metrique_derive_ti[2]+
|
144 |
|
|
ddxyz[2]*dxyz[1]*coefficient_metrique_ti[4]+dxyz[2]*ddxyz[1]*coefficient_metrique_ti[4]+dxyz[2]*dxyz[1]*coefficient_metrique_derive_ti[4]+
|
145 |
|
|
ddxyz[2]*dxyz[2]*coefficient_metrique_ti[8]+dxyz[2]*ddxyz[2]*coefficient_metrique_ti[8]+dxyz[2]*dxyz[2]*coefficient_metrique_derive_ti[8];
|
146 |
|
|
double facteur3=dxyzii[0]*dxyzii[0]*coefficient_metrique_tii[0]+dxyzii[0]*dxyzii[1]*coefficient_metrique_tii[3]+dxyzii[0]*dxyzii[2]*coefficient_metrique_tii[6]+dxyzii[1]*dxyzii[0]*coefficient_metrique_tii[1]+dxyzii[1]*dxyzii[1]*coefficient_metrique_tii[4]+dxyzii[1]*dxyzii[2]*coefficient_metrique_tii[7]+dxyzii[2]*dxyzii[0]*coefficient_metrique_tii[2]+dxyzii[2]*dxyzii[1]*coefficient_metrique_tii[4]+dxyzii[2]*dxyzii[2]*coefficient_metrique_tii[8];
|
147 |
|
|
double residu=fabs(sqrt(facteur3)-sqrt(facteur1)-1./2./sqrt(facteur1)*facteur2*(tii-ti));
|
148 |
|
|
//if (residu>0.01) dt=dt/2.; else {dt=dt*2;bon_dt=1;}
|
149 |
|
|
//if (dt<1e-4) {dt=1e-4;bon_dt=1;}
|
150 |
|
|
//if (dt>0.25) {dt=0.25;bon_dt=1;}
|
151 |
|
|
bon_dt=1;
|
152 |
|
|
|
153 |
|
|
}
|
154 |
|
|
while (bon_dt!=1);
|
155 |
|
|
#endif // ON_A_ABANDONNE_ET_ON_PREND_DT_EGALE_T2_MOINS_T1_DIVISE_PAR_1000
|
156 |
|
|
|
157 |
|
|
t=0.7886751345*ti+0.2113248654*tii;
|
158 |
|
|
double coord[3];
|
159 |
|
|
double coefficient_metrique[9];
|
160 |
|
|
mcEdge->deriver(t,coord);
|
161 |
|
|
if (creation_metrique) metrique->evaluer(&t,coefficient_metrique);
|
162 |
|
|
else
|
163 |
|
|
{
|
164 |
|
|
double xyz[3];
|
165 |
|
|
mcEdge->evaluer(t,xyz);
|
166 |
|
|
metrique->evaluer(xyz,coefficient_metrique);
|
167 |
|
|
}
|
168 |
|
|
double facteur1=coord[0]*coord[0]*coefficient_metrique[0]+coord[0]*coord[1]*coefficient_metrique[3]+coord[0]*coord[2]*coefficient_metrique[6]+coord[1]*coord[0]*coefficient_metrique[1]+coord[1]*coord[1]*coefficient_metrique[4]+coord[1]*coord[2]*coefficient_metrique[7]+coord[2]*coord[0]*coefficient_metrique[2]+coord[2]*coord[1]*coefficient_metrique[4]+coord[2]*coord[2]*coefficient_metrique[8];
|
169 |
|
|
longueur_metrique=longueur_metrique+0.5*(tii-ti)*sqrt(facteur1);
|
170 |
|
|
t=0.7886751345*tii+0.2113248654*ti;
|
171 |
|
|
mcEdge->deriver(t,coord);
|
172 |
|
|
if (creation_metrique) metrique->evaluer(&t,coefficient_metrique);
|
173 |
|
|
else
|
174 |
|
|
{
|
175 |
|
|
double xyz[3];
|
176 |
|
|
mcEdge->evaluer(t,xyz);
|
177 |
|
|
metrique->evaluer(xyz,coefficient_metrique);
|
178 |
|
|
}
|
179 |
|
|
facteur1=coord[0]*coord[0]*coefficient_metrique[0]+coord[0]*coord[1]*coefficient_metrique[3]+coord[0]*coord[2]*coefficient_metrique[6]+coord[1]*coord[0]*coefficient_metrique[1]+coord[1]*coord[1]*coefficient_metrique[4]+coord[1]*coord[2]*coefficient_metrique[7]+coord[2]*coord[0]*coefficient_metrique[2]+coord[2]*coord[1]*coefficient_metrique[4]+coord[2]*coord[2]*coefficient_metrique[8];
|
180 |
|
|
longueur_metrique=longueur_metrique+0.5*(tii-ti)*sqrt(facteur1);
|
181 |
|
|
integrale pas;
|
182 |
|
|
pas.ti=ti;
|
183 |
|
|
pas.li=longueur_metrique;
|
184 |
|
|
tab_integrale.insert(tab_integrale.end(),pas);
|
185 |
|
|
}
|
186 |
|
|
while (tii<t2);
|
187 |
|
|
int nombre_de_segment=(int)floor(longueur_metrique);
|
188 |
|
|
if (longueur_metrique-floor(longueur_metrique)>0.5) nombre_de_segment++;
|
189 |
|
|
if (nombre_de_segment<1) nombre_de_segment=1;
|
190 |
|
|
|
191 |
|
|
/* discretisation */
|
192 |
|
|
|
193 |
|
|
double valeur_cible=longueur_metrique/nombre_de_segment;
|
194 |
|
|
int bon_noeud=0;
|
195 |
|
|
int numnoeud=0;
|
196 |
|
|
MCNode* noeud_depart;
|
197 |
|
|
while (bon_noeud==0)
|
198 |
|
|
{
|
199 |
|
|
noeud_depart=(MCNode*)mcEdge->get_cosommet1()->get_sommet()->get_lien_maillage()->get(numnoeud);
|
200 |
|
|
MG_NOEUD* noeudtemp=mg_maillage->get_mg_noeudid(noeud_depart->get_id());
|
201 |
|
|
if (noeudtemp==NULL) numnoeud++; else bon_noeud=1;
|
202 |
|
|
}
|
203 |
|
|
bon_noeud=0;
|
204 |
|
|
numnoeud=0;
|
205 |
|
|
MCNode* noeud_arrivee;
|
206 |
|
|
while (bon_noeud==0)
|
207 |
|
|
{
|
208 |
|
|
noeud_arrivee=(MCNode*)mcEdge->get_cosommet2()->get_sommet()->get_lien_maillage()->get(numnoeud);
|
209 |
|
|
MG_NOEUD* noeudtemp=mg_maillage->get_mg_noeudid(noeud_arrivee->get_id());
|
210 |
|
|
if (noeudtemp==NULL) numnoeud++; else bon_noeud=1;
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
MCNode* noeud_precedent=noeud_depart;
|
216 |
|
|
|
217 |
|
|
int nb_segment_cree=0;
|
218 |
|
|
int nb_pas_integrale=tab_integrale.size();
|
219 |
|
|
for (int i=0;i<nb_pas_integrale;i++)
|
220 |
|
|
{
|
221 |
|
|
while ((tab_integrale[i].li>(nb_segment_cree+1)*valeur_cible) && (nb_segment_cree<nombre_de_segment-1))
|
222 |
|
|
{
|
223 |
|
|
refresh();
|
224 |
|
|
double ti=tab_integrale[i].ti;
|
225 |
|
|
double tii=t2;
|
226 |
|
|
double li=0.;
|
227 |
|
|
if (i!=0) li=tab_integrale[i-1].li;
|
228 |
|
|
double lii=tab_integrale[i].li;
|
229 |
|
|
if (i!=nb_pas_integrale-1) tii=tab_integrale[i+1].ti;
|
230 |
|
|
t=ti+(tii-ti)/(lii-li)*((nb_segment_cree+1)*valeur_cible-li);
|
231 |
|
|
double coo[3];
|
232 |
|
|
mcEdge->evaluer(t,coo);
|
233 |
|
|
|
234 |
|
|
// arete de référence
|
235 |
|
|
MG_ARETE * nouveau_noeud_refEdge = NULL;
|
236 |
|
|
// parametre de l'arete de reference
|
237 |
|
|
double nouveau_noeud_refEdgeT = 0, Parameter_SToRefEdgeDerT;
|
238 |
|
|
mcEdge->GetPolyCurve()->Parameter_SToRefEdgeT(t,&nouveau_noeud_refEdge, &nouveau_noeud_refEdgeT, &Parameter_SToRefEdgeDerT, false);
|
239 |
|
|
// reference topology mapping
|
240 |
|
|
MCNode * nouveau_noeud = NULL;
|
241 |
|
|
MG_SOMMET * refVertex = IsPointInRefVertex(mcEdge->GetPolyCurve(),coo,1E-6);
|
242 |
|
|
if (refVertex == NULL)
|
243 |
|
|
{
|
244 |
|
|
nouveau_noeud = new MCNode(mcEdge,nouveau_noeud_refEdge,nouveau_noeud_refEdgeT,coo);
|
245 |
|
|
}
|
246 |
|
|
else
|
247 |
|
|
{
|
248 |
|
|
nouveau_noeud = new MCNode(mcEdge,refVertex,coo[0],coo[1],coo[2]);
|
249 |
|
|
}
|
250 |
|
|
mg_maillage->ajouter_mg_noeud(nouveau_noeud);
|
251 |
|
|
// création d'un segment de MC arête (arête composite)
|
252 |
|
|
MCSegment * nouveau_segment = new MCSegment (mcEdge,noeud_precedent,nouveau_noeud);
|
253 |
|
|
|
254 |
|
|
mg_maillage->ajouter_mg_segment(nouveau_segment);
|
255 |
|
|
noeud_precedent=nouveau_noeud;
|
256 |
|
|
nb_segment_cree++;
|
257 |
|
|
|
258 |
|
|
}
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
MCSegment * nouveau_segment = new MCSegment (mcEdge,noeud_precedent,noeud_arrivee);
|
262 |
|
|
|
263 |
|
|
mg_maillage->ajouter_mg_segment(nouveau_segment);
|
264 |
|
|
|
265 |
|
|
if (debug)
|
266 |
|
|
{
|
267 |
|
|
char fichierProgression1D [1024];
|
268 |
|
|
sprintf(fichierProgression1D, "%s%s", "c:\\temp\\void", "_1D.mai");
|
269 |
|
|
ofstream o3(fichierProgression1D,ios::out|ios::trunc);
|
270 |
|
|
o3.precision(16);
|
271 |
|
|
o3.setf(ios::showpoint);
|
272 |
|
|
mg_maillage->enregistrer_sous_mesh_1D(o3);
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
if (creation_metrique==1)
|
276 |
|
|
{
|
277 |
|
|
delete metrique;
|
278 |
|
|
metrique=NULL;
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
|
286 |
|
|
|
287 |
|
|
|
288 |
|
|
|