1 |
//####//------------------------------------------------------------ |
2 |
//####//------------------------------------------------------------ |
3 |
//####// MAGiC |
4 |
//####// Jean Christophe Cuilliere et Vincent FRANCOIS |
5 |
//####// Departement de Genie Mecanique - UQTR |
6 |
//####//------------------------------------------------------------ |
7 |
//####// MAGIC est un projet de recherche de l equipe ERICCA |
8 |
//####// du departement de genie mecanique de l Universite du Quebec a Trois Rivieres |
9 |
//####// http://www.uqtr.ca/ericca |
10 |
//####// http://www.uqtr.ca/ |
11 |
//####//------------------------------------------------------------ |
12 |
//####//------------------------------------------------------------ |
13 |
//####// |
14 |
//####// CAD4FE_LocalEdgeCriteria.cpp |
15 |
//####// |
16 |
//####//------------------------------------------------------------ |
17 |
//####//------------------------------------------------------------ |
18 |
//####// COPYRIGHT 2000-2024 |
19 |
//####// jeu 13 jun 2024 11:58:56 EDT |
20 |
//####//------------------------------------------------------------ |
21 |
//####//------------------------------------------------------------ |
22 |
#include <fstream> |
23 |
#include <sstream> |
24 |
|
25 |
#include "gestionversion.h" |
26 |
#include <mg_geometrie.h> |
27 |
#include <mg_maillage.h> |
28 |
#include <mg_maillage_outils.h> |
29 |
#include <ot_mathematique.h> |
30 |
|
31 |
#include "CAD4FE_MCEdge.h" |
32 |
#include "CAD4FE_MCAA.h" |
33 |
#include "CAD4FE_MCBody.h" |
34 |
#include "CAD4FE_mg_utils.h" |
35 |
#include "CAD4FE_Intersection_Plane_MG_MAILLAGE.h" |
36 |
#include "ot_algorithme_geometrique.h" |
37 |
#include "CAD4FE_Criteria.h" |
38 |
#include "CAD4FE_ColorMap.h" |
39 |
|
40 |
#pragma hdrstop |
41 |
|
42 |
#include "CAD4FE_LocalEdgeCriteria.h" |
43 |
|
44 |
|
45 |
#pragma package(smart_init) |
46 |
|
47 |
using namespace CAD4FE; |
48 |
|
49 |
|
50 |
LocalEdgeCriteria::LocalEdgeCriteria(MG_SEGMENT * __seg, MCAA * __mcaa, MG_MAILLAGE * __mesh, MG_SEGMENT * __startSeg) |
51 |
: _seg(__seg), _mcaa(__mcaa), _mesh(__mesh), _startSeg(__startSeg), _normalOffset(NULL) |
52 |
{ |
53 |
double x[2][3]; |
54 |
MG_UTILS::MG_NOEUD_GET_XYZ(_seg->get_noeud1(), x[0]); |
55 |
MG_UTILS::MG_NOEUD_GET_XYZ(_seg->get_noeud2(), x[1]); |
56 |
// _deletionScoreOppositeEdge = 0; |
57 |
|
58 |
/* GF Debug int nb_triangles_adj_start_segment = __startSeg->get_lien_triangle()->get_nb(); |
59 |
printf("start seg %ld : %d triangles adjacents\n", __startSeg->get_id(), nb_triangles_adj_start_segment);*/ |
60 |
|
61 |
for (unsigned i=0; i<3; i++) |
62 |
{ |
63 |
_P[i] = .5*(x[0][i]+x[1][i]); |
64 |
_N[i] = x[1][i]-_P[i]; |
65 |
} |
66 |
|
67 |
_meshSize = 0; |
68 |
_normalOffset = 0; |
69 |
|
70 |
_mcEdge = NULL; |
71 |
|
72 |
Update(); |
73 |
if (_mcEdge) time = _mcEdge->time; |
74 |
} |
75 |
|
76 |
LocalEdgeCriteria::~LocalEdgeCriteria() |
77 |
{ |
78 |
delete _normalOffset; |
79 |
} |
80 |
|
81 |
void |
82 |
LocalEdgeCriteria::Update(bool __reconstructNormalOffset) |
83 |
{ |
84 |
_meshSize = _mcaa->GetSize(_P); |
85 |
|
86 |
double targetLength = .86*_meshSize; |
87 |
if ( __reconstructNormalOffset |
88 |
||!_normalOffset ) |
89 |
{ |
90 |
if (_normalOffset) delete _normalOffset; |
91 |
_normalOffset = new Intersection_Plane_MG_MAILLAGE(_P, _N, _mesh, targetLength, _startSeg, NULL); |
92 |
} |
93 |
|
94 |
InitSetOfTouchingEdges(); |
95 |
|
96 |
std::vector <Intersection_Plane_MG_MAILLAGE::Vertex> & pl = _normalOffset->GetPolyline(); |
97 |
int nb_pts = pl.size(); |
98 |
int o = _normalOffset->GetOriginIndex(); |
99 |
|
100 |
// Get the mc edge attached to the start segment |
101 |
{ |
102 |
MG_SEGMENT * seg = pl[o].E; |
103 |
MG_ELEMENT_TOPOLOGIQUE * topo = seg->get_lien_topologie(); |
104 |
if ( topo && topo->get_dimension() == 1) |
105 |
{ |
106 |
MCEdge * edge = (MCEdge*) topo; |
107 |
_mcEdge = edge; |
108 |
time = _mcEdge->time; |
109 |
} |
110 |
else |
111 |
{ |
112 |
_mcEdge = (MCEdge*)_seg->get_lien_topologie(); |
113 |
} |
114 |
} |
115 |
|
116 |
for (unsigned i=0; i<2; i++) |
117 |
{ |
118 |
_lengthToOppositeEdges[i] = 0; |
119 |
_oppositeEdgesPolylineIndices[i] = -1; |
120 |
_oppositeEdges[i] = NULL; |
121 |
} |
122 |
|
123 |
for (int j = 0; j < 2; j++) |
124 |
{ |
125 |
for (int i = 0; i+1 < nb_pts; i++) |
126 |
{ |
127 |
int k[2]; |
128 |
if (j == 0) |
129 |
{ |
130 |
k[0] = o - i; |
131 |
k[1] = o - i - 1; |
132 |
if (k[1] < 0 || k[1] >= nb_pts) |
133 |
break; |
134 |
} |
135 |
else if (j == 1) |
136 |
{ |
137 |
k[0] = o + i; |
138 |
k[1] = o + i + 1; |
139 |
if (k[1] < 0 || k[1] >= nb_pts) |
140 |
break; |
141 |
} |
142 |
|
143 |
MG_SEGMENT * Seg [2]; |
144 |
MG_NOEUD * No [2]; |
145 |
OT_VECTEUR_3D xyz[2]; |
146 |
double dl; |
147 |
|
148 |
for (unsigned l = 0; l < 2; l++) |
149 |
{ |
150 |
xyz[l] = pl[k[l]].X; |
151 |
Seg[l] = pl[k[l]].E; |
152 |
No[l] = pl[k[l]].V; |
153 |
} |
154 |
|
155 |
MG_ELEMENT_TOPOLOGIQUE * topo; |
156 |
topo = Seg[1]->get_lien_topologie(); |
157 |
|
158 |
if (topo && topo->get_dimension() == 1 ) |
159 |
{ |
160 |
_oppositeEdges[j] = (MCEdge *) topo; |
161 |
_oppositeEdgesPolylineIndices[j] = k[1]; |
162 |
} |
163 |
else |
164 |
{ |
165 |
_oppositeEdges[j] = NULL; |
166 |
_oppositeEdgesPolylineIndices[j] = -1; |
167 |
} |
168 |
|
169 |
dl = (xyz[0] - xyz[1]).get_longueur(); |
170 |
_lengthToOppositeEdges[j] += dl; |
171 |
|
172 |
if ( _oppositeEdges[j] ) |
173 |
break; |
174 |
} |
175 |
} |
176 |
|
177 |
_point = pl[o].X; |
178 |
double * segStart = pl[0].X, * segEnd = pl[nb_pts-1].X; |
179 |
for (unsigned i=0;i<3;i++) |
180 |
{ |
181 |
_segment [0][i] = segStart[i]; |
182 |
_segment [1][i] = segEnd[i]; |
183 |
} |
184 |
|
185 |
/** Compute the local edge properties */ |
186 |
// Face width |
187 |
_faceWidth = std::min( _lengthToOppositeEdges[0], _lengthToOppositeEdges[1] ); |
188 |
// Epsilon (distance between the mesh and the geometry |
189 |
_epsilon = OT_ALGORITHME_GEOMETRIQUE::Dist3D_Point_Segment( _segment [0], _segment [1], _point);
// Angle between the 2 edge segments |
190 |
if ( _segment [0] == _point || _segment [1] == _point ) |
191 |
_deviationAngle = 0; |
192 |
else |
193 |
_deviationAngle = OT_ALGORITHME_GEOMETRIQUE::Angle3D_Segment_Segment( _segment [0], _point, _segment [1] );
|
194 |
} |
195 |
|
196 |
double LocalEdgeCriteria::DeletionScore_FaceWidth() const |
197 |
{ |
198 |
double criterionFaceWidth; |
199 |
double limitFaceWidth = _meshSize / _mcaa->GetMaxOverdensity(); |
200 |
|
201 |
if ( _oppositeEdges[0] || _oppositeEdges[1] ) |
202 |
{ |
203 |
if (_faceWidth < limitFaceWidth) |
204 |
criterionFaceWidth = 1 - _faceWidth / limitFaceWidth; |
205 |
else |
206 |
criterionFaceWidth = .05 * (1 - _faceWidth / limitFaceWidth); |
207 |
} |
208 |
else |
209 |
criterionFaceWidth = -.05; |
210 |
|
211 |
return criterionFaceWidth; |
212 |
} |
213 |
|
214 |
double LocalEdgeCriteria::DeletionScore_DeviationAngle() const |
215 |
{ |
216 |
double criterionAngle; |
217 |
double limitAngle = _mcaa->GetLimitAngle(); |
218 |
|
219 |
if (_deviationAngle < limitAngle) |
220 |
criterionAngle = 1 - _deviationAngle / limitAngle; |
221 |
else |
222 |
criterionAngle = .2*(1 - _deviationAngle / limitAngle); |
223 |
|
224 |
return criterionAngle; |
225 |
} |
226 |
|
227 |
double LocalEdgeCriteria::DeletionScore() const |
228 |
{ |
229 |
int i, NB_CRITERIA = 0; |
230 |
double score = 0; |
231 |
double val[10]; |
232 |
|
233 |
if (_mcaa->GetMCBody()->G21()->GetArc(_mcEdge->get_id())->Rank() != 2) |
234 |
return 0; |
235 |
|
236 |
if (_mcEdge && _mcEdge->get_nb_ccf()) |
237 |
return 0; |
238 |
|
239 |
val[NB_CRITERIA++] = DeletionScore_FaceWidth(); |
240 |
val[NB_CRITERIA++] = DeletionScore_DeviationAngle(); |
241 |
// val[NB_CRITERIA++] = DeletionScore_OppositeEdge(); |
242 |
|
243 |
for (i=0;i<NB_CRITERIA;i++) |
244 |
{ |
245 |
if (score < val[i]) |
246 |
{ |
247 |
score = val[i]; |
248 |
} |
249 |
} |
250 |
|
251 |
return score; |
252 |
} |
253 |
|
254 |
void LocalEdgeCriteria::GetPolylineVertex(int i, float * __vec3f) const |
255 |
{ |
256 |
const double * vec3d = _normalOffset->GetPolyline()[i].X; |
257 |
for (int i=0; i<3; i++) |
258 |
__vec3f[i] = vec3d[i]; |
259 |
} |
260 |
|
261 |
unsigned LocalEdgeCriteria::GetPolylineVerticesCount() const |
262 |
{ |
263 |
return _normalOffset->GetPolyline().size(); |
264 |
} |
265 |
|
266 |
std::string |
267 |
LocalEdgeCriteria::InventorText() |
268 |
{ |
269 |
std::ostringstream out; |
270 |
|
271 |
unsigned char rgb[3]; |
272 |
ColorMap::jetColorMap(rgb, 1-DeletionScore(), 0, 1); |
273 |
_normalOffset->SetColor(rgb); |
274 |
out << _normalOffset->InventorText(); |
275 |
|
276 |
for (unsigned j=0; j<2; j++) |
277 |
if (_oppositeEdgesPolylineIndices[j] != -1) { |
278 |
int i = _oppositeEdgesPolylineIndices[j]; |
279 |
std::vector <Intersection_Plane_MG_MAILLAGE::Vertex> & pl = _normalOffset->GetPolyline(); |
280 |
out << "\nSeparator { #sep1 \n"; |
281 |
out << "\n Coordinate3 {\n point [ \n"; |
282 |
out << pl[i].X[0] << " " <<pl[i].X[1] << " " << pl[i].X[2] << " \n"; |
283 |
out << "\n]\n}\n"; |
284 |
out << "PolygonOffset { \n"; |
285 |
out << "styles POINTS \n"; |
286 |
out << "factor 4.0 \n"; |
287 |
out << "units 1.0 \n"; |
288 |
out << "} \n"; |
289 |
out << "DrawStyle {\npointSize 4\n}\n"; |
290 |
out << "BaseColor { \n rgb 1.0 0.0 0.0\n }\n"; |
291 |
out << "PointSet {\nstartIndex "<<0<<"\nnumPoints "<<1<<"\n}\n"; |
292 |
out << "} # end Sep1 \n"; |
293 |
} |
294 |
|
295 |
return out.str(); |
296 |
} |
297 |
|
298 |
MCEdge * LocalEdgeCriteria::GetEdge() |
299 |
{ |
300 |
return _mcEdge; |
301 |
} |
302 |
|
303 |
MG_SEGMENT * LocalEdgeCriteria::GetSegment() |
304 |
{ |
305 |
return _seg; |
306 |
} |
307 |
|
308 |
double LocalEdgeCriteria::GetFaceWidth() |
309 |
{ |
310 |
return _faceWidth; |
311 |
} |
312 |
|
313 |
double LocalEdgeCriteria::GetEpsilon() |
314 |
{ |
315 |
return _epsilon; |
316 |
} |
317 |
|
318 |
double LocalEdgeCriteria::GetDeviationAngle() |
319 |
{ |
320 |
return _deviationAngle; |
321 |
} |
322 |
bool LocalEdgeCriteria::IsTouchingEdge(MCEdge * __mcEdge) |
323 |
{ |
324 |
return _setTouchingEdge.find(__mcEdge) != _setTouchingEdge.end(); |
325 |
} |
326 |
bool LocalEdgeCriteria::IsTouchingSegment(MG_SEGMENT * __segment) |
327 |
{ |
328 |
if (__segment == NULL) |
329 |
return false; |
330 |
|
331 |
std::vector <Intersection_Plane_MG_MAILLAGE::Vertex> & pl = _normalOffset->GetPolyline(); |
332 |
unsigned nb_pts = pl.size(); |
333 |
|
334 |
// Get the mc edge attached to the start segment |
335 |
for (unsigned i = 0; i < nb_pts; i++) |
336 |
{ |
337 |
MG_SEGMENT * seg = pl[i].E; |
338 |
|
339 |
if (seg == __segment) |
340 |
return true; |
341 |
} |
342 |
|
343 |
return false; |
344 |
} |
345 |
bool LocalEdgeCriteria::IsStartSegment(MG_SEGMENT * __segment) |
346 |
{ |
347 |
if (__segment == NULL) |
348 |
return false; |
349 |
|
350 |
std::vector <Intersection_Plane_MG_MAILLAGE::Vertex> & pl = _normalOffset->GetPolyline(); |
351 |
unsigned int o = _normalOffset->GetOriginIndex(); |
352 |
|
353 |
return (pl[o].E == __segment); |
354 |
} |
355 |
|
356 |
MCEdge * LocalEdgeCriteria::GetTouchingEdge(int __index) |
357 |
{ |
358 |
if (__index >= 0 && __index < 2) |
359 |
return _oppositeEdges[__index]; |
360 |
else |
361 |
{ |
362 |
printf("Error GetTouchingEdge: __index = %d\n", __index); |
363 |
return NULL; |
364 |
} |
365 |
} |
366 |
|
367 |
double LocalEdgeCriteria::GetLengthToTouchingEdge(int __index) |
368 |
{ |
369 |
if (__index >= 0 && __index < 2) |
370 |
return _lengthToOppositeEdges[__index]; |
371 |
else |
372 |
{ |
373 |
printf("Error GetLengthToTouchingEdge: __index = %d\n", __index); |
374 |
return -1; |
375 |
} |
376 |
} |
377 |
MCEdge * LocalEdgeCriteria::GetClosestTouchingEdge() |
378 |
{ |
379 |
return (_lengthToOppositeEdges[0] < _lengthToOppositeEdges[1]) |
380 |
? _oppositeEdges[0] |
381 |
: _oppositeEdges[1]; |
382 |
} |
383 |
double * LocalEdgeCriteria::GetClosestTouchingEdgePoint() |
384 |
{ |
385 |
int i = (_lengthToOppositeEdges[0] < _lengthToOppositeEdges[1]) |
386 |
? 0 |
387 |
: 1; |
388 |
return _normalOffset->GetPolyline()[ _oppositeEdgesPolylineIndices [i] ].X; |
389 |
} |
390 |
|
391 |
double * LocalEdgeCriteria::GetTouchingEdgePoint(int __index) |
392 |
{ |
393 |
if (__index >= 0 && __index < 2) |
394 |
return _normalOffset->GetPolyline()[ _oppositeEdgesPolylineIndices [__index] ].X; |
395 |
else |
396 |
{ |
397 |
printf("Error GetLengthToTouchingEdge: __index = %d\n", __index); |
398 |
return 0; |
399 |
} |
400 |
} |
401 |
void LocalEdgeCriteria::CheckMCTess() |
402 |
{ |
403 |
std::vector <Intersection_Plane_MG_MAILLAGE::Vertex> & pl = _normalOffset->GetPolyline(); |
404 |
int nb_pts = pl.size(); |
405 |
int o = _normalOffset->GetOriginIndex(); |
406 |
|
407 |
for (int j = 0; j < 2; j++) |
408 |
{ |
409 |
for (int i = 0; i+1 < nb_pts; i++) |
410 |
{ |
411 |
int k[2]; |
412 |
if (j == 0) |
413 |
{ |
414 |
k[0] = o - i; |
415 |
k[1] = o - i - 1; |
416 |
if (k[1] < 0 || k[1] >= nb_pts) |
417 |
break; |
418 |
} |
419 |
else if (j == 1) |
420 |
{ |
421 |
k[0] = o + i; |
422 |
k[1] = o + i + 1; |
423 |
if (k[1] < 0 || k[1] >= nb_pts) |
424 |
break; |
425 |
} |
426 |
|
427 |
MG_SEGMENT * Seg [2]; |
428 |
MG_NOEUD * No [2]; |
429 |
OT_VECTEUR_3D xyz[2]; |
430 |
double dl; |
431 |
|
432 |
for (unsigned l = 0; l < 2; l++) |
433 |
{ |
434 |
xyz[l] = pl[k[l]].X; |
435 |
Seg[l] = pl[k[l]].E; |
436 |
No[l] = pl[k[l]].V; |
437 |
} |
438 |
|
439 |
MG_ELEMENT_TOPOLOGIQUE * topo; |
440 |
topo = Seg[1]->get_lien_topologie(); |
441 |
|
442 |
if ( ! _mcaa->GetMCTess()->contient(Seg[1])) |
443 |
printf("The MC Tessellation does not contains a segment crossed by LEC's polyline !\n"); |
444 |
_mcaa->CheckIfTopoExists(topo); |
445 |
if (topo->get_dimension() < 2) |
446 |
break; |
447 |
} |
448 |
} |
449 |
} |
450 |
|
451 |
|
452 |
|
453 |
double LocalEdgeCriteria::GetMeshSize() |
454 |
{ |
455 |
return _meshSize; |
456 |
} |
457 |
|
458 |
void LocalEdgeCriteria::InitSetOfTouchingEdges() |
459 |
{ |
460 |
std::vector <Intersection_Plane_MG_MAILLAGE::Vertex> & pl = _normalOffset->GetPolyline(); |
461 |
unsigned nb_pts = pl.size(); |
462 |
|
463 |
_setTouchingEdge.clear(); |
464 |
for (unsigned i = 0; i < nb_pts; i++) |
465 |
{ |
466 |
MG_SEGMENT * seg = pl[i].E; |
467 |
MG_ELEMENT_TOPOLOGIQUE * topo = seg->get_lien_topologie(); |
468 |
if (topo && topo->get_dimension() == 1) |
469 |
_setTouchingEdge.insert((MCEdge*)topo); |
470 |
} |
471 |
} |