1 |
francois |
1156 |
//####//------------------------------------------------------------ |
2 |
|
|
//####//------------------------------------------------------------ |
3 |
|
|
//####// MAGiC |
4 |
|
|
//####// Jean Christophe Cuilliere et Vincent FRANCOIS |
5 |
|
|
//####// Departement de Genie Mecanique - UQTR |
6 |
|
|
//####//------------------------------------------------------------ |
7 |
|
|
//####// MAGIC est un projet de recherche de l equipe ERICCA |
8 |
|
|
//####// du departement de genie mecanique de l Universite du Quebec a Trois Rivieres |
9 |
|
|
//####// http://www.uqtr.ca/ericca |
10 |
|
|
//####// http://www.uqtr.ca/ |
11 |
|
|
//####//------------------------------------------------------------ |
12 |
|
|
//####//------------------------------------------------------------ |
13 |
|
|
//####// |
14 |
|
|
//####// stbspline.cpp |
15 |
|
|
//####// |
16 |
|
|
//####//------------------------------------------------------------ |
17 |
|
|
//####//------------------------------------------------------------ |
18 |
|
|
//####// COPYRIGHT 2000-2024 |
19 |
|
|
//####// jeu 13 jun 2024 11:53:59 EDT |
20 |
|
|
//####//------------------------------------------------------------ |
21 |
|
|
//####//------------------------------------------------------------ |
22 |
foucault |
27 |
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
#include "stbspline.h" |
26 |
francois |
283 |
#include <vector> |
27 |
foucault |
27 |
#include "st_gestionnaire.h" |
28 |
|
|
#include "tpl_fonction.h" |
29 |
|
|
#include "constantegeo.h" |
30 |
|
|
|
31 |
|
|
#include <math.h> |
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
ST_B_SPLINE::ST_B_SPLINE(long LigneCourante,std::string idori,int bs_degre,std::vector<int> bs_indexptsctr,std::vector<int> bs_knots_multiplicities,std::vector<double> bs_knots):ST_COURBE(LigneCourante,idori),degre(bs_degre) |
36 |
|
|
{ |
37 |
francois |
283 |
int nb=bs_knots_multiplicities.size(); |
38 |
|
|
for (int i=0;i<nb;i++) |
39 |
|
|
{ |
40 |
foucault |
27 |
for (int j=0;j<bs_knots_multiplicities[i];j++) |
41 |
francois |
283 |
knots.insert(knots.end(),bs_knots[i]); |
42 |
|
|
} |
43 |
|
|
nb_point=bs_indexptsctr.size(); |
44 |
|
|
for (int i=0;i<nb_point;i++) |
45 |
|
|
{ |
46 |
foucault |
27 |
indexptsctr.insert(indexptsctr.end(),bs_indexptsctr[i]); |
47 |
|
|
//poids.insert(poids.end(),1.); |
48 |
francois |
283 |
} |
49 |
foucault |
27 |
|
50 |
|
|
} |
51 |
|
|
|
52 |
|
|
ST_B_SPLINE::ST_B_SPLINE(int bs_degre,std::vector<double> &vec_knots,std::vector<double> &vec_point,std::vector<double> &vec_poids):ST_COURBE(),degre(bs_degre) |
53 |
|
|
{ |
54 |
francois |
283 |
int nb=vec_knots.size(); |
55 |
|
|
for (int i=0;i<nb;i++) |
56 |
foucault |
27 |
knots.insert(knots.end(),vec_knots[i]); |
57 |
francois |
283 |
nb_point=vec_point.size()/3; |
58 |
|
|
for (int i=0;i<nb_point;i++) |
59 |
|
|
{ |
60 |
|
|
double w=vec_poids[i]; |
61 |
|
|
double x=vec_point[3*i]; |
62 |
|
|
double y=vec_point[3*i+1]; |
63 |
|
|
double z=vec_point[3*i+2]; |
64 |
|
|
OT_VECTEUR_4D pt(w*x,w*y,w*z,w); |
65 |
|
|
ptsctr.push_back(pt); |
66 |
|
|
} |
67 |
|
|
double xyz1[3]; |
68 |
|
|
double xyz2[3]; |
69 |
|
|
xyz1[0]=vec_point[0]; |
70 |
|
|
xyz1[1]=vec_point[1]; |
71 |
|
|
xyz1[2]=vec_point[2]; |
72 |
|
|
xyz2[0]=vec_point[3*nb_point-3]; |
73 |
|
|
xyz2[1]=vec_point[3*nb_point-2]; |
74 |
|
|
xyz2[2]=vec_point[3*nb_point-1]; |
75 |
|
|
periodique=0; |
76 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6)) |
77 |
|
|
{ |
78 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6)) |
79 |
foucault |
27 |
{ |
80 |
francois |
283 |
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6)) |
81 |
foucault |
27 |
periodique=1; |
82 |
|
|
} |
83 |
francois |
283 |
} |
84 |
foucault |
27 |
|
85 |
francois |
283 |
if (periodique==1) |
86 |
|
|
{ |
87 |
foucault |
27 |
int i=knots.size(); |
88 |
|
|
periode=(knots[i-1]-knots[0]); |
89 |
francois |
283 |
} |
90 |
|
|
else periode=0; |
91 |
foucault |
27 |
} |
92 |
|
|
|
93 |
|
|
ST_B_SPLINE::~ST_B_SPLINE() |
94 |
|
|
{ |
95 |
|
|
} |
96 |
|
|
|
97 |
|
|
int ST_B_SPLINE::get_intervalle(int nb_point, int degre, double t, std::vector<double> &knots) |
98 |
|
|
{ |
99 |
francois |
283 |
int inter; |
100 |
|
|
if (OPERATEUR::egal(t,knots[nb_point],1E-10)==1) inter=nb_point-1; |
101 |
|
|
else if (OPERATEUR::egal(t,knots[degre],1E-10)==1) inter=degre; |
102 |
|
|
else |
103 |
|
|
{ |
104 |
foucault |
27 |
int low=degre; |
105 |
|
|
int high=nb_point+1; |
106 |
|
|
int mid=((low+high)/2); |
107 |
|
|
while ((t<knots[mid-1]) || (t>=knots[mid])) |
108 |
francois |
283 |
{ |
109 |
|
|
if (t<knots[mid-1]) high=mid; |
110 |
|
|
else low=mid; |
111 |
|
|
mid=(low+high)/2; |
112 |
|
|
} |
113 |
foucault |
27 |
inter=mid-1; |
114 |
francois |
283 |
} |
115 |
|
|
return inter; |
116 |
foucault |
27 |
} |
117 |
|
|
|
118 |
francois |
283 |
void ST_B_SPLINE::binomialCoef(double * Bin, int d) { |
119 |
|
|
int n,k; |
120 |
|
|
// Setup the first line |
121 |
|
|
Bin[0] = 1.0 ; |
122 |
|
|
for (k=d-1;k>0;--k) |
123 |
|
|
Bin[k] = 0.0 ; |
124 |
|
|
// Setup the other lines |
125 |
|
|
for (n=0;n<d-1;n++) { |
126 |
|
|
Bin[(n+1)*d+0] = 1.0 ; |
127 |
|
|
for (k=1;k<d;k++) |
128 |
|
|
if (n+1<k) |
129 |
|
|
Bin[(n+1)*d+k] = 0.0 ; |
130 |
|
|
else |
131 |
|
|
Bin[(n+1)*d+k] = Bin[n*d+k] + Bin[n*d+k-1] ; |
132 |
|
|
} |
133 |
foucault |
27 |
} |
134 |
|
|
|
135 |
|
|
void ST_B_SPLINE::get_valeur_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n) |
136 |
|
|
{ |
137 |
francois |
283 |
double saved; |
138 |
|
|
grand_n[0]=1.0; |
139 |
|
|
double gauche[16]; |
140 |
|
|
double droite[16]; |
141 |
|
|
for (int j=1;j<=degre;j++) |
142 |
|
|
{ |
143 |
foucault |
27 |
gauche[j-1]= t-knots[inter-j+1]; |
144 |
|
|
droite[j-1]=knots[inter+j]-t; |
145 |
|
|
saved=0.0; |
146 |
|
|
for (int r=0;r<j;r++) |
147 |
francois |
283 |
{ |
148 |
|
|
double temp=grand_n[r]/(droite[r]+ gauche[j-r-1]); |
149 |
|
|
grand_n[r]=saved+droite[r]* temp; |
150 |
|
|
saved=gauche[j-r-1]*temp; |
151 |
|
|
} |
152 |
foucault |
27 |
grand_n[j]=saved; |
153 |
francois |
283 |
} |
154 |
foucault |
27 |
} |
155 |
|
|
|
156 |
|
|
|
157 |
|
|
void ST_B_SPLINE::evaluer(double t,double *xyz) |
158 |
|
|
{ |
159 |
francois |
283 |
if (est_periodique()) |
160 |
|
|
{ |
161 |
|
|
double tmin=get_tmin(); |
162 |
|
|
double tmax=get_tmax(); |
163 |
|
|
while (t>tmax) t -= periode; |
164 |
|
|
while (t<tmin) t += periode; |
165 |
|
|
} |
166 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots); |
167 |
|
|
double grand_n[256]; |
168 |
|
|
get_valeur_fonction(inter,t,degre,knots,grand_n); |
169 |
foucault |
27 |
|
170 |
francois |
283 |
OT_VECTEUR_4D sp(0,0,0,0) ; |
171 |
|
|
for (int j=0; j<=degre; j++) |
172 |
|
|
{ |
173 |
|
|
sp += grand_n[j] * ptsctr[inter-degre+j]; |
174 |
|
|
} |
175 |
|
|
|
176 |
|
|
// transform homogeneous coordinates to 3D coordinates |
177 |
|
|
for (int i=0; i<3; i++) |
178 |
|
|
xyz[i] = sp[i]/sp.w(); |
179 |
foucault |
27 |
} |
180 |
francois |
283 |
/* |
181 |
foucault |
27 |
void ST_B_SPLINE::get_tout_fonction(int inter, double t, int degre, std::vector<double> &knots,double *grand_n) |
182 |
|
|
{ |
183 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j)) |
184 |
|
|
double saved; |
185 |
|
|
grand_n(0,0)=1.0; |
186 |
|
|
double gauche[16]; |
187 |
|
|
double droite[16]; |
188 |
|
|
for (int j=1;j<=degre;j++) |
189 |
francois |
283 |
{ |
190 |
|
|
gauche[j-1]= t-knots[inter-j+1]; |
191 |
|
|
droite[j-1]=knots[inter+j]-t; |
192 |
|
|
saved=0.0; |
193 |
|
|
for (int r=0;r<j;r++) |
194 |
|
|
{ |
195 |
|
|
grand_n(j,r)=(droite[r]+ gauche[j-r-1]); |
196 |
|
|
double temp = grand_n(r,j-1)/grand_n(j,r); |
197 |
foucault |
27 |
|
198 |
francois |
283 |
grand_n(r,j)= saved+droite[r]*temp; |
199 |
|
|
saved=gauche[j-r-1]*temp; |
200 |
|
|
} |
201 |
|
|
grand_n(j,j)=saved; |
202 |
|
|
} |
203 |
foucault |
27 |
#undef grand_n // enlever (i,j) |
204 |
|
|
} */ |
205 |
|
|
|
206 |
|
|
void ST_B_SPLINE::deriver_fonction(int inter,double t,int degre,int dd,std::vector<double> &knots,double *f_deriver) |
207 |
|
|
{ |
208 |
|
|
#define f_deriver(i,j) (*(f_deriver+(i)*(degre+1)+j)) |
209 |
|
|
#define grand_n(i,j) (*(grand_n+(i)*(degre+1)+j)) |
210 |
|
|
#define a(i,j) (*(a+(i)*(dd+1)+j)) |
211 |
francois |
283 |
double *grand_n=new double[(degre+1)*(degre+1)]; |
212 |
|
|
double saved; |
213 |
|
|
grand_n(0,0)=1.0; |
214 |
|
|
double *gauche=new double[degre+1]; |
215 |
|
|
double *droite=new double[degre+1]; |
216 |
|
|
for (int j=1;j<=degre;j++) |
217 |
|
|
{ |
218 |
foucault |
27 |
gauche[j]= t-knots[inter-j+1]; |
219 |
|
|
droite[j]=knots[inter+j]-t; |
220 |
|
|
saved=0.0; |
221 |
|
|
for (int r=0;r<j;r++) |
222 |
francois |
283 |
{ |
223 |
|
|
grand_n(j,r)=(droite[r+1]+ gauche[j-r]); |
224 |
|
|
double temp = grand_n(r,j-1)/grand_n(j,r); |
225 |
foucault |
27 |
|
226 |
francois |
283 |
grand_n(r,j)= saved+droite[r+1]*temp; |
227 |
|
|
saved=gauche[j-r]*temp; |
228 |
|
|
} |
229 |
foucault |
27 |
grand_n(j,j)=saved; |
230 |
francois |
283 |
} |
231 |
|
|
for (int j=0;j<=degre;j++) |
232 |
|
|
{ |
233 |
foucault |
27 |
f_deriver(0,j)= grand_n(j,degre); |
234 |
francois |
283 |
} |
235 |
|
|
double *a=new double[(degre+1)*(degre+1)]; |
236 |
|
|
for (int r=0;r<=degre;r++) |
237 |
|
|
{ |
238 |
|
|
int s1=0; |
239 |
|
|
int s2=1; |
240 |
foucault |
27 |
a(0,0)=1.0; |
241 |
|
|
for (int k=1;k<=dd; k++) |
242 |
francois |
283 |
{ |
243 |
|
|
double d=0.0; |
244 |
|
|
int rk=r-k; |
245 |
|
|
int pk=degre-k; |
246 |
|
|
if (r>=k) |
247 |
|
|
{ |
248 |
|
|
a(s2,0)=a(s1,0)/grand_n(pk+1,rk); |
249 |
|
|
d= a(s2,0)* grand_n(rk,pk); |
250 |
|
|
} |
251 |
|
|
int j1; |
252 |
|
|
int j2; |
253 |
|
|
if (rk>=-1) j1=1; |
254 |
|
|
else j1= -rk; |
255 |
|
|
if (r-1<=pk) j2=k-1; |
256 |
|
|
else j2=degre-r; |
257 |
|
|
for (int j=j1;j<=j2;j++) |
258 |
|
|
{ |
259 |
|
|
a(s2,j) = (a(s1,j)-a(s1,j-1))/grand_n(pk+1,rk+j); |
260 |
|
|
d+=a(s2,j)*grand_n(rk+j,pk); |
261 |
|
|
} |
262 |
|
|
if (r<=pk) |
263 |
|
|
{ |
264 |
|
|
a(s2,k) = -a(s1,k-1)/grand_n(pk+1,r); |
265 |
|
|
d+=a(s2,k)*grand_n(r,pk); |
266 |
|
|
} |
267 |
|
|
f_deriver(k,r)=d; |
268 |
|
|
int j=s1; |
269 |
|
|
s1=s2; |
270 |
|
|
s2=j; |
271 |
foucault |
27 |
} |
272 |
francois |
283 |
} |
273 |
|
|
int r=degre; |
274 |
|
|
for (int k=1;k<=dd;k++) |
275 |
|
|
{ |
276 |
|
|
for (int j=0;j<=degre;j++) |
277 |
foucault |
27 |
{ |
278 |
francois |
283 |
f_deriver(k,j)*=r; |
279 |
|
|
} |
280 |
foucault |
27 |
r*=(degre-k); |
281 |
francois |
283 |
} |
282 |
|
|
delete [] a; |
283 |
|
|
delete [] grand_n; |
284 |
|
|
delete [] gauche; |
285 |
|
|
delete [] droite; |
286 |
foucault |
27 |
#undef f_deriver |
287 |
|
|
#undef grand_n |
288 |
francois |
283 |
#undef a |
289 |
foucault |
27 |
} |
290 |
|
|
|
291 |
|
|
void ST_B_SPLINE::deriver_bs_kieme(int nb_point,int degre,std::vector<double> &knots,std::vector<OT_VECTEUR_4D> &ptsctr_x,double t,int d, OT_VECTEUR_4D * CK) |
292 |
|
|
{ |
293 |
francois |
283 |
int du = std::min(d,degre); |
294 |
|
|
int inter = get_intervalle(nb_point,degre,t, knots); |
295 |
|
|
double derF[256]; |
296 |
|
|
deriver_fonction(inter, t,degre,du,knots,derF); |
297 |
foucault |
27 |
|
298 |
|
|
#define derF(i,j) (*(derF+(i)*(degre+1)+j)) |
299 |
francois |
283 |
for (int k=du;k>=0;--k) |
300 |
|
|
{ |
301 |
|
|
CK[k] = OT_VECTEUR_4D(0,0,0,0); |
302 |
|
|
for (int j=degre;j>=0;--j) |
303 |
foucault |
27 |
{ |
304 |
francois |
283 |
CK[k] += derF(k,j)*ptsctr_x[inter-degre+j]; |
305 |
foucault |
27 |
} |
306 |
francois |
283 |
} |
307 |
foucault |
27 |
#undef derF |
308 |
|
|
} |
309 |
|
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
void ST_B_SPLINE::deriver_kieme(double t,int d, double *CK_x,double *CK_y,double *CK_z) |
313 |
|
|
{ |
314 |
francois |
283 |
int i,k; |
315 |
|
|
OT_VECTEUR_4D dersW[16], ders[16]; |
316 |
|
|
OT_VECTEUR_4D v; |
317 |
|
|
deriver_bs_kieme(nb_point, degre, knots, ptsctr, t, d, dersW); |
318 |
|
|
|
319 |
|
|
double Bin[256]; |
320 |
|
|
int dbin=d+1; |
321 |
|
|
binomialCoef(Bin, dbin); |
322 |
foucault |
27 |
#define Bin(i,j) (*(Bin+(i)*(dbin)+j)) |
323 |
|
|
|
324 |
francois |
283 |
for (k=0;k<=d;k++) |
325 |
foucault |
27 |
{ |
326 |
|
|
ders[k] = dersW[k]; |
327 |
francois |
283 |
for (i=k ;i>0 ;--i) |
328 |
foucault |
27 |
ders[k] -= (Bin(k,i)*dersW[i].w())*ders[k-i]; |
329 |
|
|
ders[k]/=dersW[0].w(); |
330 |
|
|
} |
331 |
|
|
|
332 |
|
|
for (int i=0; i<=d; i++) |
333 |
|
|
{ |
334 |
|
|
CK_x[i]=ders[i][0]; |
335 |
|
|
CK_y[i]=ders[i][1]; |
336 |
|
|
CK_z[i]=ders[i][2]; |
337 |
|
|
} |
338 |
|
|
} |
339 |
|
|
|
340 |
|
|
void ST_B_SPLINE::deriver(double t,double *dxyz) |
341 |
|
|
{ |
342 |
francois |
283 |
if (est_periodique()) |
343 |
|
|
{ |
344 |
|
|
double tmin=get_tmin(); |
345 |
|
|
double tmax=get_tmax(); |
346 |
|
|
while (t>tmax) t -= periode; |
347 |
|
|
while (t<tmin) t += periode; |
348 |
|
|
} |
349 |
|
|
double CK_x[2]; |
350 |
|
|
double CK_y[2]; |
351 |
|
|
double CK_z[2]; |
352 |
|
|
deriver_kieme(t,1,CK_x,CK_y,CK_z); |
353 |
|
|
dxyz[0]=CK_x[1]; |
354 |
|
|
dxyz[1]=CK_y[1]; |
355 |
|
|
dxyz[2]=CK_z[1]; |
356 |
foucault |
27 |
} |
357 |
|
|
|
358 |
|
|
void ST_B_SPLINE::deriver_seconde(double t,double *ddxyz,double* dxyz ,double* xyz ) |
359 |
|
|
{ |
360 |
francois |
283 |
if (est_periodique()) |
361 |
|
|
{ |
362 |
|
|
double tmin=get_tmin(); |
363 |
|
|
double tmax=get_tmax(); |
364 |
|
|
while (t>tmax) t -= periode; |
365 |
|
|
while (t<tmin) t += periode; |
366 |
|
|
} |
367 |
|
|
double CK_x[3]; |
368 |
|
|
double CK_y[3]; |
369 |
|
|
double CK_z[3]; |
370 |
|
|
deriver_kieme(t,2,CK_x,CK_y,CK_z); |
371 |
|
|
ddxyz[0]=CK_x[2]; |
372 |
|
|
ddxyz[1]=CK_y[2]; |
373 |
|
|
ddxyz[2]=CK_z[2]; |
374 |
|
|
if (dxyz!=NULL) |
375 |
|
|
{ |
376 |
foucault |
27 |
dxyz[0]=CK_x[1]; |
377 |
|
|
dxyz[1]=CK_y[1]; |
378 |
|
|
dxyz[2]=CK_z[1]; |
379 |
francois |
283 |
} |
380 |
|
|
if (xyz!=NULL) |
381 |
|
|
{ |
382 |
foucault |
27 |
xyz[0]=CK_x[0]; |
383 |
|
|
xyz[1]=CK_y[0]; |
384 |
|
|
xyz[2]=CK_z[0]; |
385 |
francois |
283 |
} |
386 |
foucault |
27 |
} |
387 |
|
|
|
388 |
|
|
|
389 |
|
|
|
390 |
|
|
void ST_B_SPLINE::inverser(double& t,double *xyz,double precision) |
391 |
|
|
{ |
392 |
francois |
283 |
int code; |
393 |
|
|
int num_point=nb_point; |
394 |
|
|
do |
395 |
|
|
{ |
396 |
foucault |
27 |
code=inverser2(t,xyz,num_point,precision); |
397 |
|
|
num_point=num_point*2; |
398 |
francois |
283 |
} |
399 |
|
|
while (code==0 && num_point < 100000); |
400 |
foucault |
27 |
} |
401 |
|
|
|
402 |
|
|
int ST_B_SPLINE::inverser2(double& t,double *xyz,int num_test,double precision) |
403 |
|
|
{ |
404 |
francois |
283 |
double xyz1[3]; |
405 |
|
|
double dxyz1[3]; |
406 |
|
|
double ddxyz1[3]; |
407 |
|
|
double ti; |
408 |
|
|
double eps; |
409 |
|
|
double tmin=get_tmin(); |
410 |
|
|
double tmax=get_tmax(); |
411 |
|
|
OT_VECTEUR_3D Pt(xyz[0],xyz[1],xyz[2]); |
412 |
|
|
double distance_ref=1e308; |
413 |
|
|
int ref; |
414 |
foucault |
27 |
|
415 |
francois |
283 |
for (int i=0;i<num_test+1;i++) |
416 |
|
|
{ |
417 |
foucault |
27 |
double t=tmin+i*1./num_test*(tmax-tmin); |
418 |
|
|
evaluer(t,xyz1); |
419 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]); |
420 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
421 |
|
|
double longueur=Distance.get_longueur2(); |
422 |
|
|
if (longueur<distance_ref) |
423 |
francois |
283 |
{ |
424 |
|
|
distance_ref=longueur; |
425 |
|
|
ref=i; |
426 |
foucault |
27 |
} |
427 |
francois |
283 |
} |
428 |
foucault |
27 |
|
429 |
francois |
283 |
double tii=tmin+ref*1./num_test*(tmax-tmin); |
430 |
|
|
int compteur=0; |
431 |
|
|
do |
432 |
|
|
{ |
433 |
foucault |
27 |
compteur++; |
434 |
|
|
ti=tii; |
435 |
|
|
deriver_seconde(ti,ddxyz1,dxyz1,xyz1); |
436 |
|
|
OT_VECTEUR_3D Ct(xyz1[0],xyz1[1],xyz1[2]); |
437 |
|
|
OT_VECTEUR_3D Ct_deriver(dxyz1[0],dxyz1[1],dxyz1[2]); |
438 |
|
|
OT_VECTEUR_3D Ct_deriver_seconde(ddxyz1[0],ddxyz1[1],ddxyz1[2]); |
439 |
|
|
OT_VECTEUR_3D Distance = Ct-Pt; |
440 |
|
|
tii=ti-Ct_deriver*Distance/(Ct_deriver_seconde*Distance+Ct_deriver.get_longueur2()); |
441 |
|
|
if (periodique==1) |
442 |
francois |
283 |
{ |
443 |
|
|
if (tii<get_tmin()) tii=get_tmax()-(get_tmin()-tii); |
444 |
|
|
if (tii>get_tmax()) tii=get_tmin()+(tii-get_tmax()); |
445 |
|
|
} |
446 |
foucault |
27 |
else |
447 |
francois |
283 |
{ |
448 |
|
|
if (tii<get_tmin()) tii=get_tmin(); |
449 |
|
|
if (tii>get_tmax()) tii=get_tmax(); |
450 |
|
|
} |
451 |
foucault |
27 |
eps=fabs(tii-ti); |
452 |
|
|
if (compteur>500) return 0; |
453 |
francois |
283 |
} |
454 |
|
|
while (eps>precision); |
455 |
|
|
t=ti; |
456 |
|
|
return 1; |
457 |
foucault |
27 |
} |
458 |
|
|
|
459 |
|
|
double ST_B_SPLINE::get_tmin() |
460 |
|
|
{ |
461 |
francois |
283 |
return knots[0]; |
462 |
foucault |
27 |
} |
463 |
|
|
double ST_B_SPLINE::get_tmax() |
464 |
|
|
{ |
465 |
francois |
283 |
int i=knots.size(); |
466 |
|
|
return knots[i-1]; |
467 |
foucault |
27 |
} |
468 |
|
|
|
469 |
|
|
double equation_longueur(ST_B_SPLINE& bsp,double t) |
470 |
francois |
283 |
{ |
471 |
|
|
double dxyz[3]; |
472 |
|
|
bsp.deriver(t,dxyz); |
473 |
|
|
return sqrt(dxyz[0]*dxyz[0]+dxyz[1]*dxyz[1]+dxyz[2]*dxyz[2]); |
474 |
|
|
} |
475 |
foucault |
27 |
|
476 |
|
|
|
477 |
|
|
double ST_B_SPLINE::get_longueur(double t1,double t2,double precis) |
478 |
|
|
{ |
479 |
francois |
283 |
TPL_FONCTION1<double,ST_B_SPLINE,double> longueur_bsp(*this,equation_longueur); |
480 |
|
|
return longueur_bsp.integrer_gauss_2(t1,t2); |
481 |
foucault |
27 |
} |
482 |
|
|
|
483 |
|
|
|
484 |
|
|
int ST_B_SPLINE::est_periodique(void) |
485 |
|
|
{ |
486 |
francois |
283 |
return periodique; |
487 |
foucault |
27 |
} |
488 |
|
|
double ST_B_SPLINE::get_periode(void) |
489 |
|
|
{ |
490 |
francois |
283 |
return periode; |
491 |
foucault |
27 |
} |
492 |
|
|
|
493 |
|
|
int ST_B_SPLINE::get_type_geometrique(TPL_LISTE_ENTITE<double> ¶m) |
494 |
|
|
{ |
495 |
francois |
283 |
for (int i=0;i<nb_point-(degre+1);i++) |
496 |
|
|
{ |
497 |
|
|
param.ajouter(knots[i]); |
498 |
|
|
} |
499 |
|
|
double xyz[3]; |
500 |
|
|
for (int i=0;i<nb_point;i++) |
501 |
|
|
{ |
502 |
|
|
xyz[0]=ptsctr[i].x()/ptsctr[i].w(); |
503 |
|
|
xyz[1]=ptsctr[i].y()/ptsctr[i].w(); |
504 |
|
|
xyz[2]=ptsctr[i].z()/ptsctr[i].w(); |
505 |
|
|
param.ajouter(xyz[0]); |
506 |
|
|
param.ajouter(xyz[1]); |
507 |
|
|
param.ajouter(xyz[2]); |
508 |
|
|
} |
509 |
|
|
for (int i=0;i<nb_point;i++) |
510 |
|
|
{ |
511 |
|
|
param.ajouter(ptsctr[i].w()); |
512 |
|
|
} |
513 |
|
|
param.ajouter(degre); |
514 |
francois |
1149 |
return GEOMETRIE::CONST::Co_BSPLINE; |
515 |
foucault |
27 |
} |
516 |
|
|
|
517 |
|
|
void ST_B_SPLINE::initialiser(ST_GESTIONNAIRE *gest) |
518 |
|
|
{ |
519 |
francois |
283 |
int i=indexptsctr.size(); |
520 |
|
|
ST_POINT* point1=gest->lst_point.getid(indexptsctr[0]); |
521 |
|
|
ST_POINT* point2=gest->lst_point.getid(indexptsctr[i-1]); |
522 |
|
|
double xyz1[3]; |
523 |
|
|
double xyz2[3]; |
524 |
|
|
point1->evaluer(xyz1); |
525 |
|
|
point2->evaluer(xyz2); |
526 |
|
|
periodique=0; |
527 |
|
|
if (OPERATEUR::egal (xyz1[0],xyz2[0],1E-6)) |
528 |
|
|
{ |
529 |
|
|
if (OPERATEUR::egal (xyz1[1],xyz2[1],1E-6)) |
530 |
foucault |
27 |
{ |
531 |
francois |
283 |
if (OPERATEUR::egal (xyz1[2],xyz2[2],1E-6)) |
532 |
foucault |
27 |
periodique=1; |
533 |
|
|
} |
534 |
francois |
283 |
} |
535 |
foucault |
27 |
|
536 |
francois |
283 |
if (periodique==1) |
537 |
|
|
{ |
538 |
foucault |
27 |
int i=knots.size(); |
539 |
|
|
periode=(knots[i-1]-knots[0]); |
540 |
francois |
283 |
} |
541 |
|
|
else periode=0; |
542 |
foucault |
27 |
|
543 |
francois |
283 |
int nbptsctr=indexptsctr.size(); |
544 |
|
|
for (int i=0;i<nbptsctr;i++) |
545 |
|
|
{ |
546 |
foucault |
27 |
ST_POINT* stpoint=gest->lst_point.getid(indexptsctr[i]); |
547 |
|
|
double xyz[3]; |
548 |
|
|
stpoint->evaluer(xyz); |
549 |
|
|
OT_VECTEUR_4D pt(xyz[0],xyz[1],xyz[2],1); |
550 |
|
|
ptsctr.insert(ptsctr.end(),pt); |
551 |
francois |
283 |
} |
552 |
foucault |
27 |
} |
553 |
|
|
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
|
557 |
|
|
|
558 |
|
|
void ST_B_SPLINE::est_util(ST_GESTIONNAIRE* gest) |
559 |
|
|
{ |
560 |
francois |
283 |
util=true; |
561 |
|
|
for (int i=0;i<nb_point;i++) |
562 |
foucault |
27 |
gest->lst_point.getid(indexptsctr[i])->est_util(gest); |
563 |
|
|
} |
564 |
|
|
|
565 |
|
|
|
566 |
|
|
|
567 |
|
|
|
568 |
|
|
void ST_B_SPLINE::get_param_NURBS(int& indx_premier_ptctr,TPL_LISTE_ENTITE<double> ¶m) |
569 |
|
|
{ |
570 |
|
|
|
571 |
|
|
|
572 |
francois |
283 |
param.ajouter(1); |
573 |
foucault |
27 |
|
574 |
francois |
283 |
param.ajouter(degre+1); |
575 |
|
|
param.ajouter(0); |
576 |
foucault |
27 |
|
577 |
|
|
|
578 |
francois |
283 |
param.ajouter(nb_point); |
579 |
|
|
param.ajouter(0); |
580 |
foucault |
27 |
|
581 |
|
|
|
582 |
francois |
283 |
for (unsigned int i=0;i<knots.size();i++) |
583 |
|
|
{ |
584 |
|
|
param.ajouter(knots[i]); |
585 |
|
|
} |
586 |
foucault |
27 |
|
587 |
|
|
|
588 |
francois |
283 |
for (unsigned int pt=0;pt<ptsctr.size();pt++) |
589 |
|
|
{ |
590 |
|
|
double w=ptsctr[pt].w(); |
591 |
|
|
double inv_w=1/w; |
592 |
|
|
double x=ptsctr[pt].x()*inv_w; |
593 |
|
|
double y=ptsctr[pt].y()*inv_w; |
594 |
|
|
double z=ptsctr[pt].z()*inv_w; |
595 |
|
|
param.ajouter(x); |
596 |
|
|
param.ajouter(y); |
597 |
|
|
param.ajouter(z); |
598 |
|
|
param.ajouter(w); |
599 |
|
|
} |
600 |
|
|
indx_premier_ptctr=5+knots.size(); |
601 |
|
|
} |