1 |
francois |
941 |
clc;
|
2 |
|
|
disp('Solution exercice 1 du chapitre introduction');
|
3 |
|
|
B=[1.5,0,0];
|
4 |
|
|
D=[0,0.6,0];
|
5 |
|
|
C=[0,2.1,0];
|
6 |
|
|
DB=D-B;
|
7 |
|
|
CB=C-B;
|
8 |
|
|
P=[0,-4500,0];
|
9 |
|
|
syms d c;
|
10 |
|
|
eq1=d*DB(1)/norm(DB,2)+c*CB(1)/norm(CB,2)+P(1);
|
11 |
|
|
eq2=d*DB(2)/norm(DB,2)+c*CB(2)/norm(CB,2)+P(2);
|
12 |
|
|
F=solve(eq1,eq2,c,d);
|
13 |
|
|
Ac=320*1e-3*1e-3;
|
14 |
|
|
Ad=250*1e-3*1e-3;
|
15 |
|
|
sigmac=F.c/Ac;
|
16 |
|
|
sigmad=F.d/Ad;
|
17 |
|
|
E=70e9;
|
18 |
|
|
epsilonc=sigmac/E;
|
19 |
|
|
epsilond=sigmad/E;
|
20 |
|
|
eval(epsilonc);
|
21 |
|
|
eval(epsilond);
|
22 |
|
|
deltalc=epsilonc*norm(CB,2);
|
23 |
|
|
deltald=epsilond*norm(DB,2);
|
24 |
|
|
syms u v;
|
25 |
|
|
eq3=u*norm(B,2)/norm(CB,2)-v*norm(C,2)/norm(CB,2)-deltalc;
|
26 |
|
|
eq4=u*norm(B,2)/norm(DB,2)-v*norm(D,2)/norm(DB,2)-deltald;
|
27 |
|
|
D=solve(eq3,eq4,u,v);
|
28 |
|
|
disp(sprintf('Fc=%d N',eval(F.c)));
|
29 |
|
|
disp(sprintf('Fd=%d N',eval(F.d)));
|
30 |
|
|
disp(sprintf('sigmac=%d Pa',eval(sigmac)));
|
31 |
|
|
disp(sprintf('sigmad=%d Pa',eval(sigmad)));
|
32 |
|
|
disp(sprintf('deltac=%d m',eval(deltalc)));
|
33 |
|
|
disp(sprintf('deltad=%d m',eval(deltald)));
|
34 |
|
|
disp(sprintf('u=%d m',eval(D.u)));
|
35 |
|
|
disp(sprintf('v=%d m',eval(D.v)));
|