1 |
francois |
941 |
clc;
|
2 |
|
|
disp('Solution exercice 1 du chapitre contraintes');
|
3 |
|
|
F=157000;
|
4 |
|
|
T=200000;
|
5 |
|
|
p=1.2e6;
|
6 |
|
|
r=400e-3;
|
7 |
|
|
t=20e-3;
|
8 |
|
|
disp(' a) Contraintes dues a la pression interne');
|
9 |
|
|
syms b teta ro
|
10 |
|
|
Fteta=0.5*int(p*b*r*sin(teta),teta,0,pi);
|
11 |
|
|
sigmatetaa=Fteta/b/t
|
12 |
|
|
sigmaxa=p*r/2/t
|
13 |
|
|
disp(' b) Contraintes dues a la force axiale');
|
14 |
|
|
sigmaxb=F/2/pi/r/t
|
15 |
|
|
J=int(1,teta,0,2.*pi)*int(ro*ro*ro,ro,r-t/2,r+t/2);
|
16 |
|
|
tauxtetac=T*r/J;
|
17 |
|
|
eval(tauxtetac)
|
18 |
|
|
disp(' tenseur des contraintes en Pa');
|
19 |
|
|
sigma=[sigmatetaa,tauxtetac,0;tauxtetac,sigmaxa+sigmaxb,0;0,0,0];
|
20 |
|
|
eval(sigma)
|
21 |
|
|
disp(' Vecteurs et valeurs propores');
|
22 |
|
|
[V,D]=eig(sigma);
|
23 |
|
|
eval(V)
|
24 |
|
|
eval(D)
|
25 |
|
|
disp(' Angle de la direction 1 en degre');
|
26 |
|
|
costeta1=V(1,3)/sqrt(V(1,3)*V(1,3)+V(2,3)*V(2,3));
|
27 |
|
|
sinteta1=V(2,3)/sqrt(V(1,3)*V(1,3)+V(2,3)*V(2,3));
|
28 |
|
|
teta1=sign(eval(sinteta1))*acos(costeta1);
|
29 |
|
|
eval(teta1);
|
30 |
|
|
eval(teta1/pi*180)
|
31 |
|
|
disp(' Angle de la direction 2 en degre');
|
32 |
|
|
costeta2=V(1,2)/sqrt(V(1,2)*V(1,2)+V(2,2)*V(2,2));
|
33 |
|
|
sinteta2=V(2,2)/sqrt(V(1,2)*V(1,2)+V(2,2)*V(2,2));
|
34 |
|
|
teta2=sign(eval(sinteta2))*acos(costeta2);
|
35 |
|
|
eval(teta2);
|
36 |
|
|
eval(teta2/pi*180)
|
37 |
|
|
disp(' Cisaillement maximal en Pa');
|
38 |
|
|
taumax=0.5*(D(3,3)-D(2,2));
|
39 |
|
|
eval(taumax)
|
40 |
|
|
disp(' Direction du cisaillement maximal en degre');
|
41 |
|
|
eval(teta1/pi*180+45)
|
42 |
|
|
|