1 |
|
1 |
/*****************************************************************
|
2 |
|
|
|
3 |
|
|
m3d_move.cpp Type:Func
|
4 |
|
|
|
5 |
|
|
bouge de point 3D
|
6 |
|
|
|
7 |
|
|
Date de creation : 6-2-1998 11 :22 :51
|
8 |
|
|
Derniere version : 6-2-1998 11 :22 :51
|
9 |
|
|
|
10 |
|
|
Vincent FRANCOIS
|
11 |
|
|
|
12 |
|
|
*****************************************************************/
|
13 |
|
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
/**************************/
|
19 |
|
|
/* include */
|
20 |
|
|
#include <stdio.h>
|
21 |
|
|
#include <math.h>
|
22 |
|
|
#include "const.h"
|
23 |
|
|
#include "memoire.h"
|
24 |
|
|
#include "struct.h"
|
25 |
|
|
#include "struct3d.h"
|
26 |
|
|
#include "prototype.h"
|
27 |
|
|
|
28 |
|
|
/**************************/
|
29 |
|
|
/* variables globales */
|
30 |
|
|
extern struct environnement env;
|
31 |
|
|
extern struct s_mesh *mesh;
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
/**************************/
|
36 |
|
|
/* programme principal */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
void o3d_move(int nump,float *coord_res,float *crit)
|
41 |
|
|
{
|
42 |
|
|
int n1,n2,n3 ;
|
43 |
|
|
struct s_noeud *no,*no1,*no2,*no3;
|
44 |
|
|
struct s_tetra *tet;
|
45 |
|
|
int i, j ;
|
46 |
|
|
float tab_crit[1000], vec_opt[3], cmin ;
|
47 |
|
|
float tab_opt[3000] ;
|
48 |
|
|
float gamma, vn[3], xi, yi, zi, vab[3], vac[3], vbc[3], hauteur ;
|
49 |
|
|
float perimetre, coeff, alpha ;
|
50 |
|
|
float delta[3] ;
|
51 |
|
|
float vec_save[3], bmin, bmax, eps, crit_save ;
|
52 |
|
|
float calpha, calpha_moins_eps, vresu[3] ;
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
no=ADRESSE(nump,noeud,mesh->);
|
56 |
|
|
if (no->type!=BODY) return;
|
57 |
|
|
/* sauvegarde des coordonnees du noeud */
|
58 |
|
|
vec_save[0] = no->x;
|
59 |
|
|
vec_save[1] = no->y;
|
60 |
|
|
vec_save[2] = no->z;
|
61 |
|
|
|
62 |
|
|
/* tetraedres connectes au noeud */
|
63 |
|
|
for (i=0;i<no->nb_tetra;i++)
|
64 |
|
|
{
|
65 |
|
|
tet=no->tetra[i];
|
66 |
|
|
if (tet->etat!=ACTIF) continue;
|
67 |
|
|
if (tet->n1==no->num)
|
68 |
|
|
{
|
69 |
|
|
n1=tet->n2;
|
70 |
|
|
n2=tet->n4;
|
71 |
|
|
n3=tet->n3;
|
72 |
|
|
}
|
73 |
|
|
if (tet->n2==no->num)
|
74 |
|
|
{
|
75 |
|
|
n1=tet->n1;
|
76 |
|
|
n2=tet->n3;
|
77 |
|
|
n3=tet->n4;
|
78 |
|
|
}
|
79 |
|
|
if (tet->n3==no->num)
|
80 |
|
|
{
|
81 |
|
|
n1=tet->n1;
|
82 |
|
|
n2=tet->n4;
|
83 |
|
|
n3=tet->n2;
|
84 |
|
|
}
|
85 |
|
|
if (tet->n4==no->num)
|
86 |
|
|
{
|
87 |
|
|
n1=tet->n1;
|
88 |
|
|
n2=tet->n2;
|
89 |
|
|
n3=tet->n3;
|
90 |
|
|
}
|
91 |
|
|
no1=ADRESSE(n1,noeud,mesh->);
|
92 |
|
|
no2=ADRESSE(n2,noeud,mesh->);
|
93 |
|
|
no3=ADRESSE(n3,noeud,mesh->);
|
94 |
|
|
/* determination du point optimal de la face nb_ele */
|
95 |
|
|
xi = (no1->x+no2->x+no3->x)/3. ;
|
96 |
|
|
yi = (no1->y+no2->y+no3->y)/3. ;
|
97 |
|
|
zi = (no1->z+no2->z+no3->z)/3. ;
|
98 |
|
|
|
99 |
|
|
/* calcul de la normale a la face */
|
100 |
|
|
VEC(vab,no1,no2);
|
101 |
|
|
NORME(vab) ;
|
102 |
|
|
VEC(vac,no1,no3);
|
103 |
|
|
NORME(vac) ;
|
104 |
|
|
VEC(vbc,no2,no3);
|
105 |
|
|
NORME(vbc) ;
|
106 |
|
|
|
107 |
|
|
/* calcul du critere 2 D */
|
108 |
|
|
perimetre = vab[3] + vbc[3] + vbc[3] ;
|
109 |
|
|
hauteur = (perimetre/3.) * 0.8 ;
|
110 |
|
|
PVEC(vn,vab,vac);
|
111 |
|
|
NORME(vn) ;
|
112 |
|
|
/* calcul du vecteur AP et orientation de la face */
|
113 |
|
|
/* point optimal */
|
114 |
|
|
tab_opt[3*i] = xi + hauteur * vn[0] ;
|
115 |
|
|
tab_opt[3*i+1] = yi + hauteur * vn[1] ;
|
116 |
|
|
tab_opt[3*i+2] = zi + hauteur * vn[2] ;
|
117 |
|
|
}
|
118 |
|
|
/* calcul de la qualite de chaque tetraedre */
|
119 |
|
|
cmin = 1. ;
|
120 |
|
|
for (i=0;i<no->nb_tetra;i++)
|
121 |
|
|
{
|
122 |
|
|
tet=no->tetra[i];
|
123 |
|
|
/* calcul du critere */
|
124 |
|
|
if (tet->etat==ACTIF)
|
125 |
|
|
{
|
126 |
|
|
tab_crit[i] = m3d_cal_qual(tet->n1,tet->n2,tet->n3,tet->n4) ;
|
127 |
|
|
if (tab_crit[i] < cmin) cmin = tab_crit[i] ;
|
128 |
|
|
}
|
129 |
|
|
else tab_crit[i]=0.;
|
130 |
|
|
}
|
131 |
|
|
/* calcul des coordonnees du point ideal */
|
132 |
|
|
gamma = 0. ;
|
133 |
|
|
for (i=0;i<no->nb_tetra;i++)
|
134 |
|
|
if (tab_crit[i]!=0.) gamma = gamma + 1./(tab_crit[i]*tab_crit[i]) ;/* somme des carres des inverses */
|
135 |
|
|
/* calcul du point optimal pour la boule */
|
136 |
|
|
gamma = 1./gamma ;
|
137 |
|
|
vec_opt[0] = 0. ;
|
138 |
|
|
vec_opt[1] = 0. ;
|
139 |
|
|
vec_opt[2] = 0. ;
|
140 |
|
|
|
141 |
|
|
for (i=0;i<no->nb_tetra;i++)
|
142 |
|
|
{
|
143 |
|
|
if (tab_crit[i]!=0.)
|
144 |
|
|
{
|
145 |
|
|
coeff = gamma/(tab_crit[i]*tab_crit[i]) ;
|
146 |
|
|
vec_opt[0] = vec_opt[0] + coeff * tab_opt[3*i] ;
|
147 |
|
|
vec_opt[1] = vec_opt[1] + coeff * tab_opt[3*i+1] ;
|
148 |
|
|
vec_opt[2] = vec_opt[2] + coeff * tab_opt[3*i+2] ;
|
149 |
|
|
}
|
150 |
|
|
}
|
151 |
|
|
|
152 |
|
|
delta[0] = vec_opt[0] - no->x ;
|
153 |
|
|
delta[1] = vec_opt[1] - no->y ;
|
154 |
|
|
delta[2] = vec_opt[2] - no->z ;
|
155 |
|
|
/* sauvegarde du critere mini */
|
156 |
|
|
crit_save = cmin ;
|
157 |
|
|
|
158 |
|
|
/* initialisation des bornes du parametre */
|
159 |
|
|
bmin = 0. ;
|
160 |
|
|
bmax = 1. ;
|
161 |
|
|
|
162 |
|
|
vresu[0] = vec_save[0] ;
|
163 |
|
|
vresu[1] = vec_save[1] ;
|
164 |
|
|
vresu[2] = vec_save[2] ;
|
165 |
|
|
|
166 |
|
|
for (i=0;i<5;i++)
|
167 |
|
|
{
|
168 |
|
|
alpha = 0.5 * (bmin + bmax) ;
|
169 |
|
|
no->x = vec_save[0] + alpha * delta[0] ;
|
170 |
|
|
no->y = vec_save[1] + alpha * delta[1] ;
|
171 |
|
|
no->z = vec_save[2] + alpha * delta[2] ;
|
172 |
|
|
|
173 |
|
|
/* evaluation de la qualite pour la valeur alpha */
|
174 |
|
|
/* on evalue la qualite cmin pour alpha */
|
175 |
|
|
calpha = 1. ;
|
176 |
|
|
for (j=0;j<no->nb_tetra;j++)
|
177 |
|
|
{
|
178 |
|
|
tet=no->tetra[j];
|
179 |
|
|
if (tet->etat!=ACTIF) continue;
|
180 |
|
|
/* calcul du critere */
|
181 |
|
|
tab_crit[j] = m3d_cal_qual(tet->n1,tet->n2,tet->n3,tet->n4) ;
|
182 |
|
|
if (tab_crit[j] < calpha) calpha = tab_crit[j] ;
|
183 |
|
|
}
|
184 |
|
|
/* la valeur du critere pour alpha est superieure, il faut la stocker */
|
185 |
|
|
if (calpha > crit_save)
|
186 |
|
|
{
|
187 |
|
|
vresu[0] = no->x ;
|
188 |
|
|
vresu[1] = no->y ;
|
189 |
|
|
vresu[2] = no->z ;
|
190 |
|
|
crit_save = calpha ;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/* on evalue la qualite c1 pour alpha - eps */
|
194 |
|
|
eps = (bmax-bmin)/50. ;
|
195 |
|
|
no->x = vec_save[0] + (alpha - eps) * delta[0] ;
|
196 |
|
|
no->y = vec_save[1] + (alpha - eps) * delta[1] ;
|
197 |
|
|
no->z = vec_save[2] + (alpha - eps) * delta[2] ;
|
198 |
|
|
calpha_moins_eps = 1. ;
|
199 |
|
|
for (j=0;j<no->nb_tetra;j++)
|
200 |
|
|
{
|
201 |
|
|
tet=no->tetra[j];
|
202 |
|
|
if (tet->etat!=ACTIF) continue;
|
203 |
|
|
/* calcul du critere */
|
204 |
|
|
tab_crit[j] = m3d_cal_qual(tet->n1,tet->n2,tet->n3,tet->n4) ;
|
205 |
|
|
if (tab_crit[j] < calpha_moins_eps) calpha_moins_eps = tab_crit[j] ;
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
no->x = vec_save[0] + alpha * delta[0] ;
|
209 |
|
|
no->y = vec_save[1] + alpha * delta[1] ;
|
210 |
|
|
no->z = vec_save[2] + alpha * delta[2] ;
|
211 |
|
|
|
212 |
|
|
if (calpha_moins_eps < calpha)
|
213 |
|
|
{
|
214 |
|
|
bmin = alpha ;
|
215 |
|
|
/* bmax est inchange */
|
216 |
|
|
}
|
217 |
|
|
else
|
218 |
|
|
{
|
219 |
|
|
/* bmin est inchange */
|
220 |
|
|
bmax = alpha ;
|
221 |
|
|
}
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
coord_res[0] = vresu[0] ;
|
225 |
|
|
coord_res[1] = vresu[1] ;
|
226 |
|
|
coord_res[2] = vresu[2] ;
|
227 |
|
|
|
228 |
|
|
no->x=vec_save[0];
|
229 |
|
|
no->y=vec_save[1];
|
230 |
|
|
no->z=vec_save[2];
|
231 |
|
|
|
232 |
|
|
*crit=crit_save;
|
233 |
|
|
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
|
240 |
|
|
|
241 |
|
|
|